cmeraki's picture
Update README.md (#4)
1303a43
---
language:
- en
license: llama2
model_name: OpenHathi-7B-Hi-v0.1-Base-gptq
base_model: meta-llama/Llama-2-7b-chat-hf
inference: false
model_creator: SarvamAI
model_type: llama
pipeline_tag: text-generation
prompt_template: '[INST] <<SYS>>
You are a helpful, respectful and honest assistant. Always answer as helpfully as
possible, while being safe. Your answers should not include any harmful, unethical,
racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses
are socially unbiased and positive in nature. If a question does not make any sense,
or is not factually coherent, explain why instead of answering something not correct.
If you don''t know the answer to a question, please don''t share false information.
<</SYS>>
{prompt}[/INST]
'
quantized_by: cmeraki
---
# OpenHathi Base GPTQ
- Model creator: [Sarvam AI](https://huggingface.co/sarvamai)
- Original model: [sarvamai/OpenHathi-7B-Hi-v0.1-Base](https://huggingface.co/sarvamai/OpenHathi-7B-Hi-v0.1-Base/)
<!-- description start -->
## Description
This repo contains GPTQ model files for [Sarvam's OpenHathi](https://huggingface.co/sarvamai/OpenHathi-7B-Hi-v0.1-Base/).
Files are made using AutoGPTQ with following config.
```
quantization_config : {"bits": 4,
"group_size": 128,
"damp_percent": 0.1,
"desc_act": true,
}
```
We use a custom [dataset](cmeraki/wiki_en_hi) which has both Hindi and English wiki articles. We truncate to max_length=1024 and model may not perform well beyond that context size.
<!-- description end -->
<!-- prompt-template start -->
## Prompt template
This is a base model not tuned for any instructions. Feel free to use any format. Alpaca/Vicuna works fine.
<!-- prompt-template end -->
## Oobagooba
Standard oobagooba works with exllama2 / autogptq loader
## Using in code
```python
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
from transformers import AutoTokenizer
model_dir = 'cmeraki/OpenHathi-7B-Hi-v0.1-Base-gptq'
model = AutoGPTQForCausalLM.from_quantized(model_dir, device="cuda:0")
tokenizer = AutoTokenizer.from_pretrained(model_dir, fast=True)
tokens = tokenizer("do aur do", return_tensors="pt").to(model.device)
print(tokenizer.decode(model.generate(**tokens, max_length=1024)[0]))
```
<!-- README_GPTQ.md-use-from-python end -->
<!-- README_GPTQ.md-compatibility start -->