|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
model-index: |
|
- name: product_classifier |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# product_classifier |
|
|
|
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6760 |
|
- Accuracy: {'accuracy': 0.80125} |
|
- Precision: {'precision': 0.785989926719994} |
|
- Recall: {'recall': 0.7755906520102293} |
|
- F1 Score: {'f1': 0.7704315421053631} |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 Score | |
|
|:-------------:|:-----:|:----:|:---------------:|:-----------------------:|:---------------------------------:|:------------------------------:|:-------------------------:| |
|
| 0.9575 | 1.0 | 3200 | 0.6832 | {'accuracy': 0.7978125} | {'precision': 0.7851098622896849} | {'recall': 0.7737991362724596} | {'f1': 0.771520016712035} | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.28.0 |
|
- Pytorch 2.0.0+cu118 |
|
- Datasets 2.11.0 |
|
- Tokenizers 0.13.3 |
|
|