flax-sentence-embeddings/st-codesearch-distilroberta-base

This is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.

It was trained on the code_search_net dataset and can be used to search program code given text.

Usage:

from sentence_transformers import SentenceTransformer, util


#This list the defines the different programm codes
code = ["""def sort_list(x):
   return sorted(x)""",
"""def count_above_threshold(elements, threshold=0):
    counter = 0
    for e in elements:
        if e > threshold:
            counter += 1
    return counter""",
"""def find_min_max(elements):
    min_ele = 99999
    max_ele = -99999
    for e in elements:
        if e < min_ele:
            min_ele = e
        if e > max_ele:
            max_ele = e
    return min_ele, max_ele"""]
    

model = SentenceTransformer("flax-sentence-embeddings/st-codesearch-distilroberta-base")

# Encode our code into the vector space
code_emb = model.encode(code, convert_to_tensor=True)

# Interactive demo: Enter queries, and the method returns the best function from the 
# 3 functions we defined
while True:
    query = input("Query: ")
    query_emb = model.encode(query, convert_to_tensor=True)
    hits = util.semantic_search(query_emb, code_emb)[0]
    top_hit = hits[0]

    print("Cossim: {:.2f}".format(top_hit['score']))
    print(code[top_hit['corpus_id']])
    print("\n\n")

Usage (Sentence-Transformers)

Using this model becomes easy when you have sentence-transformers installed:

pip install -U sentence-transformers

Then you can use the model like this:

from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]

model = SentenceTransformer('flax-sentence-embeddings/st-codesearch-distilroberta-base')
embeddings = model.encode(sentences)
print(embeddings)

Training

The model was trained with a DistilRoBERTa-base model for 10k training steps on the codesearch dataset with batch_size 256 and MultipleNegativesRankingLoss.

It is some preliminary model. It was neither tested nor was the trained quite sophisticated

The model was trained with the parameters:

DataLoader:

MultiDatasetDataLoader.MultiDatasetDataLoader of length 5371 with parameters:

{'batch_size': 256}

Loss:

sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss with parameters:

{'scale': 20, 'similarity_fct': 'dot_score'}

Parameters of the fit()-Method:

{
    "callback": null,
    "epochs": 1,
    "evaluation_steps": 0,
    "evaluator": "NoneType",
    "max_grad_norm": 1,
    "optimizer_class": "<class 'transformers.optimization.AdamW'>",
    "optimizer_params": {
        "lr": 2e-05
    },
    "scheduler": "warmupconstant",
    "steps_per_epoch": 10000,
    "warmup_steps": 500,
    "weight_decay": 0.01
}

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
  (2): Normalize()
)

Citing & Authors

Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train codecompletedeployment/st-codesearch-distilroberta-base