This is an updated version of cointegrated/rubert-tiny: a small Russian BERT-based encoder with high-quality sentence embeddings. This post in Russian gives more details.
The differences from the previous version include:
- a larger vocabulary: 83828 tokens instead of 29564;
- larger supported sequences: 2048 instead of 512;
- sentence embeddings approximate LaBSE closer than before;
- meaningful segment embeddings (tuned on the NLI task)
- the model is focused only on Russian.
The model should be used as is to produce sentence embeddings (e.g. for KNN classification of short texts) or fine-tuned for a downstream task.
Sentence embeddings can be produced as follows:
# pip install transformers sentencepiece
import torch
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("cointegrated/rubert-tiny2")
model = AutoModel.from_pretrained("cointegrated/rubert-tiny2")
# model.cuda() # uncomment it if you have a GPU
def embed_bert_cls(text, model, tokenizer):
t = tokenizer(text, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**{k: v.to(model.device) for k, v in t.items()})
embeddings = model_output.last_hidden_state[:, 0, :]
embeddings = torch.nn.functional.normalize(embeddings)
return embeddings[0].cpu().numpy()
print(embed_bert_cls('привет мир', model, tokenizer).shape)
# (312,)
Alternatively, you can use the model with sentence_transformers
:
from sentence_transformers import SentenceTransformer
model = SentenceTransformer('cointegrated/rubert-tiny2')
sentences = ["привет мир", "hello world", "здравствуй вселенная"]
embeddings = model.encode(sentences)
print(embeddings)
- Downloads last month
- 510,456