Update README.md
#8
by
not-lain
- opened
README.md
CHANGED
@@ -6,7 +6,7 @@ tags:
|
|
6 |
- ColBERT
|
7 |
---
|
8 |
<p align="center">
|
9 |
-
<img align="center" src="docs/images/colbertofficial.png" width="430px" />
|
10 |
</p>
|
11 |
<p align="left">
|
12 |
|
@@ -18,7 +18,7 @@ tags:
|
|
18 |
|
19 |
|
20 |
<p align="center">
|
21 |
-
<img align="center" src="docs/images/ColBERT-Framework-MaxSim-W370px.png" />
|
22 |
</p>
|
23 |
<p align="center">
|
24 |
<b>Figure 1:</b> ColBERT's late interaction, efficiently scoring the fine-grained similarity between a queries and a passage.
|
@@ -107,7 +107,7 @@ For fast retrieval, indexing precomputes the ColBERT representations of passages
|
|
107 |
|
108 |
Example usage:
|
109 |
|
110 |
-
```
|
111 |
from colbert.infra import Run, RunConfig, ColBERTConfig
|
112 |
from colbert import Indexer
|
113 |
|
@@ -127,7 +127,7 @@ if __name__=='__main__':
|
|
127 |
|
128 |
We typically recommend that you use ColBERT for **end-to-end** retrieval, where it directly finds its top-k passages from the full collection:
|
129 |
|
130 |
-
```
|
131 |
from colbert.data import Queries
|
132 |
from colbert.infra import Run, RunConfig, ColBERTConfig
|
133 |
from colbert import Searcher
|
@@ -161,7 +161,7 @@ Training requires a JSONL triples file with a `[qid, pid+, pid-]` list per line.
|
|
161 |
|
162 |
Example usage (training on 4 GPUs):
|
163 |
|
164 |
-
```
|
165 |
from colbert.infra import Run, RunConfig, ColBERTConfig
|
166 |
from colbert import Trainer
|
167 |
|
|
|
6 |
- ColBERT
|
7 |
---
|
8 |
<p align="center">
|
9 |
+
<img align="center" src="https://github.com/stanford-futuredata/ColBERT/blob/main/docs/images/colbertofficial.png?raw=true" width="430px" />
|
10 |
</p>
|
11 |
<p align="left">
|
12 |
|
|
|
18 |
|
19 |
|
20 |
<p align="center">
|
21 |
+
<img align="center" src="https://github.com/stanford-futuredata/ColBERT/blob/main/docs/images/ColBERT-Framework-MaxSim-W370px.png?raw=true" />
|
22 |
</p>
|
23 |
<p align="center">
|
24 |
<b>Figure 1:</b> ColBERT's late interaction, efficiently scoring the fine-grained similarity between a queries and a passage.
|
|
|
107 |
|
108 |
Example usage:
|
109 |
|
110 |
+
```python
|
111 |
from colbert.infra import Run, RunConfig, ColBERTConfig
|
112 |
from colbert import Indexer
|
113 |
|
|
|
127 |
|
128 |
We typically recommend that you use ColBERT for **end-to-end** retrieval, where it directly finds its top-k passages from the full collection:
|
129 |
|
130 |
+
```python
|
131 |
from colbert.data import Queries
|
132 |
from colbert.infra import Run, RunConfig, ColBERTConfig
|
133 |
from colbert import Searcher
|
|
|
161 |
|
162 |
Example usage (training on 4 GPUs):
|
163 |
|
164 |
+
```python
|
165 |
from colbert.infra import Run, RunConfig, ColBERTConfig
|
166 |
from colbert import Trainer
|
167 |
|