Czech wav2vec2-xls-r-300m-cs-250

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice 8.0 dataset as well as other datasets listed below.

It achieves the following results on the evaluation set:

  • Loss: 0.1271
  • Wer: 0.1475
  • Cer: 0.0329

The eval.py script results using a LM are:

  • WER: 0.07274312090176113
  • CER: 0.021207369275558875

Model description

Fine-tuned facebook/wav2vec2-large-xlsr-53 on Czech using the Common Voice dataset. When using this model, make sure that your speech input is sampled at 16kHz.

The model can be used directly (without a language model) as follows:

import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

test_dataset = load_dataset("mozilla-foundation/common_voice_8_0", "cs", split="test[:2%]")

processor = Wav2Vec2Processor.from_pretrained("comodoro/wav2vec2-xls-r-300m-cs-250")
model = Wav2Vec2ForCTC.from_pretrained("comodoro/wav2vec2-xls-r-300m-cs-250")

resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    batch["speech"] = resampler(speech_array).squeeze().numpy()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
    logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)

print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset[:2]["sentence"])

Evaluation

The model can be evaluated using the attached eval.py script:

python eval.py --model_id comodoro/wav2vec2-xls-r-300m-cs-250 --dataset mozilla-foundation/common-voice_8_0 --split test --config cs

Training and evaluation data

The Common Voice 8.0 train and validation datasets were used for training, as well as the following datasets:

  • Šmídl, Luboš and Pražák, Aleš, 2013, OVM – Otázky Václava Moravce, LINDAT/CLARIAH-CZ digital library at the Institute of Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics and Physics, Charles University, http://hdl.handle.net/11858/00-097C-0000-000D-EC98-3.

  • Pražák, Aleš and Šmídl, Luboš, 2012, Czech Parliament Meetings, LINDAT/CLARIAH-CZ digital library at the Institute of Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics and Physics, Charles University, http://hdl.handle.net/11858/00-097C-0000-0005-CF9C-4.

  • Plátek, Ondřej; Dušek, Ondřej and Jurčíček, Filip, 2016, Vystadial 2016 – Czech data, LINDAT/CLARIAH-CZ digital library at the Institute of Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics and Physics, Charles University, http://hdl.handle.net/11234/1-1740.

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 800
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
3.4203 0.16 800 3.3148 1.0 1.0
2.8151 0.32 1600 0.8508 0.8938 0.2345
0.9411 0.48 2400 0.3335 0.3723 0.0847
0.7408 0.64 3200 0.2573 0.2840 0.0642
0.6516 0.8 4000 0.2365 0.2581 0.0595
0.6242 0.96 4800 0.2039 0.2433 0.0541
0.5754 1.12 5600 0.1832 0.2156 0.0482
0.5626 1.28 6400 0.1827 0.2091 0.0463
0.5342 1.44 7200 0.1744 0.2033 0.0468
0.4965 1.6 8000 0.1705 0.1963 0.0444
0.5047 1.76 8800 0.1604 0.1889 0.0422
0.4814 1.92 9600 0.1604 0.1827 0.0411
0.4471 2.09 10400 0.1566 0.1822 0.0406
0.4509 2.25 11200 0.1619 0.1853 0.0432
0.4415 2.41 12000 0.1513 0.1764 0.0397
0.4313 2.57 12800 0.1515 0.1739 0.0392
0.4163 2.73 13600 0.1445 0.1695 0.0377
0.4142 2.89 14400 0.1478 0.1699 0.0385
0.4184 3.05 15200 0.1430 0.1669 0.0376
0.3886 3.21 16000 0.1433 0.1644 0.0374
0.3795 3.37 16800 0.1426 0.1648 0.0373
0.3859 3.53 17600 0.1357 0.1604 0.0361
0.3762 3.69 18400 0.1344 0.1558 0.0349
0.384 3.85 19200 0.1379 0.1576 0.0359
0.3762 4.01 20000 0.1344 0.1539 0.0346
0.3559 4.17 20800 0.1339 0.1525 0.0351
0.3683 4.33 21600 0.1315 0.1518 0.0342
0.3572 4.49 22400 0.1307 0.1507 0.0342
0.3494 4.65 23200 0.1294 0.1491 0.0335
0.3476 4.81 24000 0.1287 0.1491 0.0336
0.3475 4.97 24800 0.1271 0.1475 0.0329

Framework versions

  • Transformers 4.16.2
  • Pytorch 1.10.1+cu102
  • Datasets 1.18.3
  • Tokenizers 0.11.0
Downloads last month
108,276
Safetensors
Model size
315M params
Tensor type
F32
·
Inference API
or

Model tree for comodoro/wav2vec2-xls-r-300m-cs-250

Finetuned
(528)
this model

Dataset used to train comodoro/wav2vec2-xls-r-300m-cs-250

Spaces using comodoro/wav2vec2-xls-r-300m-cs-250 2

Evaluation results