File size: 4,484 Bytes
2fcb483
 
 
 
91b4cda
 
2fcb483
 
93aff00
2fcb483
91b4cda
2fcb483
 
91b4cda
2fcb483
91b4cda
a5a1e27
 
91b4cda
 
2fcb483
91b4cda
 
 
a5a1e27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91b4cda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fcb483
91b4cda
2fcb483
91b4cda
 
 
 
 
 
 
 
 
2fcb483
91b4cda
 
2fcb483
 
91b4cda
 
2fcb483
91b4cda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fcb483
91b4cda
 
 
 
 
 
2fcb483
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
---
language:
- cs
license: apache-2.0
tags:
- automatic-speech-recognition
- common_voice
- generated_from_trainer
- hf-asr-leaderboard
- robust-speech-event
- xlsr-fine-tuning-week
datasets:
- common_voice
model-index:
- name: Czech comodoro Wav2Vec2 XLSR 300M CV6.1
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 6.1
      type: common_voice
      args: cs
    metrics:
    - name: Test WER
      type: wer
      value: 22.2
    - name: Test CER
      type: cer
      value: 5.1
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Robust Speech Event - Dev Data
      type: speech-recognition-community-v2/dev_data
      args: cs
    metrics:
    - name: Test WER
      type: wer
      value: 66.78
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Robust Speech Event - Test Data
      type: speech-recognition-community-v2/eval_data
      args: cs
    metrics:
    - name: Test WER
      type: wer
      value: 57.52
---
# Wav2Vec2-Large-XLSR-53-Czech

Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Czech using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset.
When using this model, make sure that your speech input is sampled at 16kHz.

## Usage

The model can be used directly (without a language model) as follows:

```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

test_dataset = load_dataset("common_voice", "cs", split="test[:2%]")

processor = Wav2Vec2Processor.from_pretrained("comodoro/wav2vec2-xls-r-300m-cs")
model = Wav2Vec2ForCTC.from_pretrained("comodoro/wav2vec2-xls-r-300m-cs")

resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
	speech_array, sampling_rate = torchaudio.load(batch["path"])
	batch["speech"] = resampler(speech_array).squeeze().numpy()
	return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
	logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)

print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset[:2]["sentence"])
```


## Evaluation

The model can be evaluated as follows on the Czech test data of Common Voice 6.1 


```python
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re

test_dataset = load_dataset("common_voice", "cs", split="test") 
wer = load_metric("wer")

processor = Wav2Vec2Processor.from_pretrained("comodoro/wav2vec2-xls-r-300m-cs")
model = Wav2Vec2ForCTC.from_pretrained("comodoro/wav2vec2-xls-r-300m-cs") 
model.to("cuda")

chars_to_ignore_regex = '[\,\?\.\!\-\;\:\/\"\“\„\%\”\�\–\'\`\«\»\—\’\…]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
	batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
	speech_array, sampling_rate = torchaudio.load(batch["path"])
	batch["speech"] = resampler(speech_array).squeeze().numpy()
	return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
	inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

	with torch.no_grad():
		logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits

	pred_ids = torch.argmax(logits, dim=-1)
	batch["pred_strings"] = processor.batch_decode(pred_ids)
	return batch

result = test_dataset.map(evaluate, batched=True, batch_size=8)

print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
```

**Test Result**: 22.20 % 


## Training

The Common Voice `train` and `validation` datasets were used for training

# TODO The script used for training can be found [here](...)