whisper-medium-swagen-combined-15hrs-model

This model is a fine-tuned version of openai/whisper-medium on the swagen dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4103
  • Wer: 0.2717

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
2.6268 0.1654 200 0.8031 0.4605
2.0712 0.3308 400 0.6148 0.3829
1.7302 0.4962 600 0.5562 0.3490
1.5735 0.6616 800 0.5103 0.3106
1.5623 0.8270 1000 0.4683 0.2776
1.2713 0.9924 1200 0.4439 0.2688
0.7209 1.1571 1400 0.4601 0.2732
0.6856 1.3225 1600 0.4391 0.2595
0.7661 1.4879 1800 0.4396 0.2755
0.8113 1.6533 2000 0.4262 0.2643
0.77 1.8187 2200 0.4175 0.2679
0.6942 1.9841 2400 0.4103 0.2717
0.2814 2.1489 2600 0.4295 0.2617
0.3171 2.3142 2800 0.4301 0.2432
0.3495 2.4796 3000 0.4299 0.2526

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
6
Safetensors
Model size
764M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for csikasote/whisper-medium-swagen-combined-15hrs-model

Finetuned
(531)
this model

Evaluation results