csikasote's picture
End of training
faffd74 verified
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - generated_from_trainer
datasets:
  - swagen
metrics:
  - wer
model-index:
  - name: whisper-medium-swagen-combined-25hrs-model
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: swagen
          type: swagen
        metrics:
          - name: Wer
            type: wer
            value: 0.25892857142857145

whisper-medium-swagen-combined-25hrs-model

This model is a fine-tuned version of openai/whisper-medium on the swagen dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3662
  • Wer: 0.2589

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
2.8233 0.0993 200 0.8047 0.4897
1.9329 0.1986 400 0.6191 0.4011
1.6927 0.2980 600 0.5421 0.3791
1.6183 0.3973 800 0.4889 0.3210
1.4431 0.4966 1000 0.4684 0.2866
1.4117 0.5959 1200 0.4258 0.2650
1.2699 0.6952 1400 0.4222 0.2665
1.0532 0.7945 1600 0.4108 0.2513
1.0589 0.8939 1800 0.3982 0.2291
1.1856 0.9932 2000 0.3853 0.2355
0.6692 1.0929 2200 0.4001 0.2650
0.6505 1.1922 2400 0.3919 0.2389
0.6613 1.2915 2600 0.3809 0.2385
0.6194 1.3908 2800 0.3873 0.2343
0.6358 1.4901 3000 0.3850 0.2142
0.6208 1.5894 3200 0.3779 0.2388
0.5932 1.6888 3400 0.3725 0.2040
0.5797 1.7881 3600 0.3712 0.2092
0.5707 1.8874 3800 0.3738 0.2342
0.5928 1.9867 4000 0.3662 0.2589
0.2626 2.0864 4200 0.3803 0.2697
0.2557 2.1857 4400 0.3853 0.2102
0.3342 2.2850 4600 0.3891 0.2062

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0