Spaetzle-v60-7b

This is a progressive (mostly dare-ties, but also slerp i.a.) merge with the intention of suitable compromise for English and German local tasks.

Spaetzle-v60-7b is a merge of the following models using LazyMergekit:

Benchmarks

The performance looks ok so far: e.g. we get in EQ-Bench: Score (v2_de): 65.08 (Parseable: 171.0).

From the Occiglot Euro LLM Leaderboard:

Model DE EN ARC EN TruthfulQA EN Belebele EN HellaSwag EN MMLU EN ARC DE TruthfulQA DE Belebele DE HellaSwag DE MMLU DE
mistral-community/Mixtral-8x22B-v0.1 66.81 72.87 70.56 52.29 93.89 70.41 77.17 63.9 29.31 92.44 77.9 70.49
cstr/Spaetzle-v60-7b 60.95 71.65 69.88 66.24 90.11 68.43 63.59 58 37.31 84.22 70.09 55.11
VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct 60.07 74.71 74.49 66.19 91.67 74.55 66.65 59.37 29.57 88.56 66.43 56.44
occiglot/occiglot-7b-de-en-instruct 56.65 61.7 60.41 49.38 81.22 60.43 57.06 54.49 31.09 77.22 68.84 51.59
occiglot/occiglot-7b-de-en 54.01 58.78 55.63 42.33 79.11 59.99 56.84 50.56 26.27 74.33 67.42 51.46
meta-llama/Meta-Llama-3-8B 53.89 63.08 58.02 43.87 86.44 61.75 65.3 46.45 24.24 81.11 62.48 55.18
mistralai/Mistral-7B-Instruct-v0.2 53.52 67.63 63.74 66.81 82.44 65.96 59.2 48.59 37.69 68.89 62.24 50.2
occiglot/occiglot-7b-eu5-instruct 53.15 57.78 55.89 44.9 74.67 59.92 53.51 52.95 28.68 66.78 68.52 48.82
clibrain/lince-mistral-7b-it-es 52.98 62.43 62.46 43.32 82.44 63.86 60.06 49.44 28.17 75 61.64 50.64
mistralai/Mistral-7B-v0.1 52.8 62.73 61.26 42.62 84.44 62.89 62.46 47.65 28.43 73.89 61.06 52.96
LeoLM/leo-mistral-hessianai-7b 51.78 56.11 52.22 42.92 73.67 57.86 53.88 47.48 25.25 69.11 68.21 48.83

And for the int4-inc quantized version, from Low-bit Quantized Open LLM Leaderboard:

Type Model Average ⬆️ ARC-c ARC-e Boolq HellaSwag Lambada MMLU Openbookqa Piqa Truthfulqa Winogrande #Params (B) #Size (G)
πŸ’ Intel/SOLAR-10.7B-Instruct-v1.0-int4-inc 68.49 60.49 82.66 88.29 68.29 73.36 62.43 35.6 80.74 56.06 76.95 10.57 5.98
πŸ’ cstr/Spaetzle-v60-7b-int4-inc 68.01 62.12 85.27 87.34 66.43 70.58 61.39 37 82.26 50.18 77.51 7.04 4.16
πŸ”· TheBloke/SOLAR-10.7B-Instruct-v1.0-GGUF 66.6 60.41 83.38 88.29 67.73 52.42 62.04 37.2 82.32 56.3 75.93 10.73 6.07
πŸ”· cstr/Spaetzle-v60-7b-Q4_0-GGUF 66.44 61.35 85.19 87.98 66.54 52.78 62.05 40.6 81.72 47 79.16 7.24 4.11
πŸ’ Intel/Mistral-7B-Instruct-v0.2-int4-inc 65.73 55.38 81.44 85.26 65.67 70.89 58.66 34.2 80.74 51.16 73.95 7.04 4.16
πŸ’ Intel/Phi-3-mini-4k-instruct-int4-inc 65.09 57.08 83.33 86.18 59.45 68.14 66.62 38.6 79.33 38.68 73.48 3.66 2.28
πŸ”· TheBloke/Mistral-7B-Instruct-v0.2-GGUF 63.52 53.5 77.9 85.44 66.9 50.11 58.45 38.8 77.58 53.12 73.4 7.24 4.11
πŸ’ Intel/Meta-Llama-3-8B-Instruct-int4-inc 62.93 51.88 81.1 83.21 57.09 71.32 62.41 35.2 78.62 36.35 72.14 7.2 5.4

Contamination check results (reference model: Mistral instruct 7b v0.1):

  • MMLU: result < 0.1, %: 0.19
  • TruthfulQA: result < 0.1, %: 0.34
  • GSM8k: result < 0.1, %: 0.39

🧩 Configuration

models:
  - model: cstr/Spaetzle-v58-7b
    # no parameters necessary for base model
  - model: abideen/AlphaMonarch-dora
    parameters:
      density: 0.60
      weight: 0.30
merge_method: dare_ties
base_model: cstr/Spaetzle-v58-7b
parameters:
  int8_mask: true
dtype: bfloat16
random_seed: 0
tokenizer_source: base

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "cstr/Spaetzle-v60-7b"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
2,791
Safetensors
Model size
7.24B params
Tensor type
BF16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for cstr/Spaetzle-v60-7b

Finetuned
(1)
this model
Quantizations
4 models

Spaces using cstr/Spaetzle-v60-7b 6

Collection including cstr/Spaetzle-v60-7b