Spaetzle-v60-7b

This is progressive (mostly dare-ties, but also slerp) merge with the intention of suitable compromise for English and German local tasks.

Spaetzle-v60-7b is a merge of the following models

Benchmarks

The performance looks ok so far: e.g. we get (for the GGUF q4) in EQ-Bench: Score (v2_de): 65.08 (Parseable: 171.0).

From Low-bit Quantized Open LLM Leaderboard

Type Model Average ⬆️ ARC-c ARC-e Boolq HellaSwag Lambada MMLU Openbookqa Piqa Truthfulqa Winogrande #Params (B) #Size (G)
πŸ’ Intel/SOLAR-10.7B-Instruct-v1.0-int4-inc 68.49 60.49 82.66 88.29 68.29 73.36 62.43 35.6 80.74 56.06 76.95 10.57 5.98
πŸ’ cstr/Spaetzle-v60-7b-int4-inc 68.01 62.12 85.27 87.34 66.43 70.58 61.39 37 82.26 50.18 77.51 7.04 4.16
πŸ”· TheBloke/SOLAR-10.7B-Instruct-v1.0-GGUF 66.6 60.41 83.38 88.29 67.73 52.42 62.04 37.2 82.32 56.3 75.93 10.73 6.07
πŸ”· cstr/Spaetzle-v60-7b-Q4_0-GGUF 66.44 61.35 85.19 87.98 66.54 52.78 62.05 40.6 81.72 47 79.16 7.24 4.11
πŸ’ Intel/Mistral-7B-Instruct-v0.2-int4-inc 65.73 55.38 81.44 85.26 65.67 70.89 58.66 34.2 80.74 51.16 73.95 7.04 4.16
πŸ’ Intel/Phi-3-mini-4k-instruct-int4-inc 65.09 57.08 83.33 86.18 59.45 68.14 66.62 38.6 79.33 38.68 73.48 3.66 2.28
πŸ”· TheBloke/Mistral-7B-Instruct-v0.2-GGUF 63.52 53.5 77.9 85.44 66.9 50.11 58.45 38.8 77.58 53.12 73.4 7.24 4.11
πŸ’ Intel/Meta-Llama-3-8B-Instruct-int4-inc 62.93 51.88 81.1 83.21 57.09 71.32 62.41 35.2 78.62 36.35 72.14 7.2 5.4
Downloads last month
1
GGUF
Model size
7.24B params
Architecture
llama

4-bit

Inference API
Unable to determine this model's library. Check the docs .

Model tree for cstr/Spaetzle-v60-7b-Q4_0-GGUF

Quantized
(7)
this model