File size: 32,010 Bytes
d154fee 2a0dcbe 2f25aea d154fee 2f25aea d154fee 2f25aea 624349c d154fee ea428cb f07bfd7 d154fee 2f25aea 6caf480 2f25aea b2bbd7c 2f25aea d154fee f07bfd7 6caf480 2e64874 2f25aea b2bbd7c f07bfd7 b2bbd7c f07bfd7 25dd1da b2bbd7c f07bfd7 b2bbd7c f07bfd7 2f25aea f07bfd7 2f25aea d154fee 2f25aea d154fee 2f25aea d154fee 2f25aea d154fee 6caf480 d154fee 2f25aea d154fee b2bbd7c f07bfd7 b2bbd7c 6caf480 2f25aea 6caf480 2f25aea b2bbd7c f07bfd7 b2bbd7c f07bfd7 2f25aea d154fee 2f25aea f07bfd7 6caf480 b2bbd7c 2f25aea 6caf480 2f25aea 6caf480 d154fee 2f25aea f07bfd7 2f25aea 624349c d154fee 2f25aea eb2a04b 2f25aea d154fee 2f25aea d154fee 2f25aea d154fee 2f25aea eb2a04b 2f25aea d154fee 933ca80 d154fee 2f25aea 933ca80 f07bfd7 933ca80 471eefc d154fee 2f25aea d154fee 2f25aea d154fee 2f25aea d154fee 2f25aea d154fee 2f25aea d154fee 2f25aea d154fee 2f25aea d154fee 2f25aea d154fee 2f25aea d154fee 2f25aea d154fee badcca6 2f25aea b2bbd7c 2f25aea d154fee 2f25aea d154fee b2bbd7c d154fee 2f25aea d154fee f07bfd7 d154fee 2f25aea d154fee 2f25aea d154fee 9ee140a d154fee 2f25aea d154fee 6caf480 b2bbd7c d154fee 17f036a d1931b1 2a0dcbe d154fee 2a0dcbe b2bbd7c 2a0dcbe 2f25aea 2a0dcbe d154fee 2a0dcbe d154fee 2a0dcbe d154fee 2a0dcbe d154fee 2a0dcbe d154fee 2a0dcbe d154fee 2a0dcbe d154fee 2a0dcbe 2f25aea 2a0dcbe d154fee b2bbd7c 2a0dcbe 17f036a 2a0dcbe d1931b1 2a0dcbe d154fee 2f25aea d154fee b2bbd7c d154fee 2f25aea d154fee b2bbd7c d154fee 2f25aea d154fee 2f25aea d154fee 2f25aea d154fee 2f25aea d154fee b2bbd7c 2f25aea d154fee 2f25aea d154fee 2f25aea d154fee 2f25aea d154fee 2f25aea d154fee 17f036a d154fee 2a0dcbe d154fee 2a0dcbe d154fee 2a0dcbe d154fee 2a0dcbe 624349c 2a0dcbe 2f25aea 2a0dcbe 17f036a 2a0dcbe d1931b1 2a0dcbe d154fee 2f25aea 9e9cca9 2f25aea b2bbd7c 2f25aea b2bbd7c 6caf480 d154fee 2f25aea 3fe35ba 2f25aea f07bfd7 2f25aea 3fe35ba 2f25aea f07bfd7 2f25aea 624349c 2f25aea 17f036a 2f25aea 2a0dcbe 2f25aea 2a0dcbe 2f25aea 2a0dcbe 2f25aea 2a0dcbe 2f25aea 2a0dcbe 2f25aea 2a0dcbe 2f25aea 17f036a 2a0dcbe 2f25aea 39b4444 2f25aea d154fee 17f036a d154fee 2a0dcbe d154fee 2a0dcbe d154fee 2a0dcbe d154fee 2a0dcbe d154fee 2a0dcbe d154fee 2a0dcbe 17f036a 2a0dcbe d1931b1 2a0dcbe d154fee 2f25aea d154fee 2f25aea d154fee 2f25aea d154fee 2f25aea d154fee 2f25aea 933ca80 2f25aea d154fee 2f25aea d154fee 2f25aea d154fee 2f25aea d154fee 2f25aea d154fee b2bbd7c 2f25aea 471eefc 2f25aea d154fee 2f25aea d154fee 2f25aea f07bfd7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 |
"""
Geneformer embedding extractor.
**Description:**
| Extracts gene or cell embeddings.
| Plots cell embeddings as heatmaps or UMAPs.
| Generates cell state embedding dictionary for use with InSilicoPerturber.
"""
# imports
import logging
import pickle
from collections import Counter
from pathlib import Path
import anndata
import matplotlib.pyplot as plt
import pandas as pd
import scanpy as sc
import seaborn as sns
import torch
from tdigest import TDigest
from tqdm.auto import trange
from . import TOKEN_DICTIONARY_FILE
from . import perturber_utils as pu
logger = logging.getLogger(__name__)
# extract embeddings
def get_embs(
model,
filtered_input_data,
emb_mode,
layer_to_quant,
pad_token_id,
forward_batch_size,
token_gene_dict,
special_token=False,
summary_stat=None,
silent=False,
):
model_input_size = pu.get_model_input_size(model)
total_batch_length = len(filtered_input_data)
if summary_stat is None:
embs_list = []
elif summary_stat is not None:
# get # of emb dims
emb_dims = pu.get_model_emb_dims(model)
if emb_mode == "cell":
# initiate tdigests for # of emb dims
embs_tdigests = [TDigest() for _ in range(emb_dims)]
if emb_mode == "gene":
gene_set = list(
{
element
for sublist in filtered_input_data["input_ids"]
for element in sublist
}
)
# initiate dict with genes as keys and tdigests for # of emb dims as values
embs_tdigests_dict = {
k: [TDigest() for _ in range(emb_dims)] for k in gene_set
}
# Check if CLS and EOS token is present in the token dictionary
cls_present = any("<cls>" in value for value in token_gene_dict.values())
eos_present = any("<eos>" in value for value in token_gene_dict.values())
if emb_mode == "cls":
assert cls_present, "<cls> token missing in token dictionary"
# Check to make sure that the first token of the filtered input data is cls token
gene_token_dict = {v: k for k, v in token_gene_dict.items()}
cls_token_id = gene_token_dict["<cls>"]
assert (
filtered_input_data["input_ids"][0][0] == cls_token_id
), "First token is not <cls> token value"
elif emb_mode == "cell":
if cls_present:
logger.warning(
"CLS token present in token dictionary, excluding from average."
)
if eos_present:
logger.warning(
"EOS token present in token dictionary, excluding from average."
)
overall_max_len = 0
for i in trange(0, total_batch_length, forward_batch_size, leave=(not silent)):
max_range = min(i + forward_batch_size, total_batch_length)
minibatch = filtered_input_data.select([i for i in range(i, max_range)])
max_len = int(max(minibatch["length"]))
original_lens = torch.tensor(minibatch["length"], device="cuda")
minibatch.set_format(type="torch")
input_data_minibatch = minibatch["input_ids"]
input_data_minibatch = pu.pad_tensor_list(
input_data_minibatch, max_len, pad_token_id, model_input_size
)
with torch.no_grad():
outputs = model(
input_ids=input_data_minibatch.to("cuda"),
attention_mask=pu.gen_attention_mask(minibatch),
)
embs_i = outputs.hidden_states[layer_to_quant]
if emb_mode == "cell":
if cls_present:
non_cls_embs = embs_i[:, 1:, :] # Get all layers except the embs
if eos_present:
mean_embs = pu.mean_nonpadding_embs(non_cls_embs, original_lens - 2)
else:
mean_embs = pu.mean_nonpadding_embs(non_cls_embs, original_lens - 1)
else:
mean_embs = pu.mean_nonpadding_embs(embs_i, original_lens)
if summary_stat is None:
embs_list.append(mean_embs)
elif summary_stat is not None:
# update tdigests with current batch for each emb dim
accumulate_tdigests(embs_tdigests, mean_embs, emb_dims)
del mean_embs
elif emb_mode == "gene":
if summary_stat is None:
embs_list.append(embs_i)
elif summary_stat is not None:
for h in trange(len(minibatch)):
length_h = minibatch[h]["length"]
input_ids_h = minibatch[h]["input_ids"][0:length_h]
# double check dimensions before unsqueezing
embs_i_dim = embs_i.dim()
if embs_i_dim != 3:
logger.error(
f"Embedding tensor should have 3 dimensions, not {embs_i_dim}"
)
raise
embs_h = embs_i[h, :, :].unsqueeze(dim=1)
dict_h = dict(zip(input_ids_h, embs_h))
for k in dict_h.keys():
accumulate_tdigests(
embs_tdigests_dict[int(k)], dict_h[k], emb_dims
)
del embs_h
del dict_h
elif emb_mode == "cls":
cls_embs = embs_i[:, 0, :].clone().detach() # CLS token layer
embs_list.append(cls_embs)
del cls_embs
overall_max_len = max(overall_max_len, max_len)
del outputs
del minibatch
del input_data_minibatch
del embs_i
torch.cuda.empty_cache()
if summary_stat is None:
if (emb_mode == "cell") or (emb_mode == "cls"):
embs_stack = torch.cat(embs_list, dim=0)
elif emb_mode == "gene":
embs_stack = pu.pad_tensor_list(
embs_list,
overall_max_len,
pad_token_id,
model_input_size,
1,
pu.pad_3d_tensor,
)
# calculate summary stat embs from approximated tdigests
elif summary_stat is not None:
if emb_mode == "cell":
if summary_stat == "mean":
summary_emb_list = tdigest_mean(embs_tdigests, emb_dims)
elif summary_stat == "median":
summary_emb_list = tdigest_median(embs_tdigests, emb_dims)
embs_stack = torch.tensor(summary_emb_list)
elif emb_mode == "gene":
if summary_stat == "mean":
[
update_tdigest_dict_mean(embs_tdigests_dict, gene, emb_dims)
for gene in embs_tdigests_dict.keys()
]
elif summary_stat == "median":
[
update_tdigest_dict_median(embs_tdigests_dict, gene, emb_dims)
for gene in embs_tdigests_dict.keys()
]
return embs_tdigests_dict
return embs_stack
def accumulate_tdigests(embs_tdigests, mean_embs, emb_dims):
# note: tdigest batch update known to be slow so updating serially
[
embs_tdigests[j].update(mean_embs[i, j].item())
for i in range(mean_embs.size(0))
for j in range(emb_dims)
]
def update_tdigest_dict(embs_tdigests_dict, gene, gene_embs, emb_dims):
embs_tdigests_dict[gene] = accumulate_tdigests(
embs_tdigests_dict[gene], gene_embs, emb_dims
)
def update_tdigest_dict_mean(embs_tdigests_dict, gene, emb_dims):
embs_tdigests_dict[gene] = tdigest_mean(embs_tdigests_dict[gene], emb_dims)
def update_tdigest_dict_median(embs_tdigests_dict, gene, emb_dims):
embs_tdigests_dict[gene] = tdigest_median(embs_tdigests_dict[gene], emb_dims)
def summarize_gene_embs(h, minibatch, embs_i, embs_tdigests_dict, emb_dims):
length_h = minibatch[h]["length"]
input_ids_h = minibatch[h]["input_ids"][0:length_h]
embs_h = embs_i[h, :, :].unsqueeze(dim=1)
dict_h = dict(zip(input_ids_h, embs_h))
[
update_tdigest_dict(embs_tdigests_dict, k, dict_h[k], emb_dims)
for k in dict_h.keys()
]
def tdigest_mean(embs_tdigests, emb_dims):
return [embs_tdigests[i].trimmed_mean(0, 100) for i in range(emb_dims)]
def tdigest_median(embs_tdigests, emb_dims):
return [embs_tdigests[i].percentile(50) for i in range(emb_dims)]
def label_cell_embs(embs, downsampled_data, emb_labels):
embs_df = pd.DataFrame(embs.cpu().numpy())
if emb_labels is not None:
for label in emb_labels:
emb_label = downsampled_data[label]
embs_df[label] = emb_label
return embs_df
def label_gene_embs(embs, downsampled_data, token_gene_dict):
gene_set = {
element for sublist in downsampled_data["input_ids"] for element in sublist
}
gene_emb_dict = {k: [] for k in gene_set}
for i in range(embs.size()[0]):
length = downsampled_data[i]["length"]
dict_i = dict(
zip(
downsampled_data[i]["input_ids"][0:length],
embs[i, :, :].unsqueeze(dim=1),
)
)
for k in dict_i.keys():
gene_emb_dict[k].append(dict_i[k])
for k in gene_emb_dict.keys():
gene_emb_dict[k] = (
torch.squeeze(torch.mean(torch.stack(gene_emb_dict[k]), dim=0), dim=0)
.cpu()
.numpy()
)
embs_df = pd.DataFrame(gene_emb_dict).T
embs_df.index = [token_gene_dict[token] for token in embs_df.index]
return embs_df
def plot_umap(embs_df, emb_dims, label, output_file, kwargs_dict, seed=0):
only_embs_df = embs_df.iloc[:, :emb_dims]
only_embs_df.index = pd.RangeIndex(0, only_embs_df.shape[0], name=None).astype(str)
only_embs_df.columns = pd.RangeIndex(0, only_embs_df.shape[1], name=None).astype(
str
)
vars_dict = {"embs": only_embs_df.columns}
obs_dict = {"cell_id": list(only_embs_df.index), f"{label}": list(embs_df[label])}
adata = anndata.AnnData(X=only_embs_df, obs=obs_dict, var=vars_dict)
sc.tl.pca(adata, svd_solver="arpack")
sc.pp.neighbors(adata, random_state=seed)
sc.tl.umap(adata, random_state=seed)
sns.set(rc={"figure.figsize": (10, 10)}, font_scale=2.3)
sns.set_style("white")
default_kwargs_dict = {"size": 200}
if kwargs_dict is not None:
default_kwargs_dict.update(kwargs_dict)
cats = set(embs_df[label])
with plt.rc_context():
ax = sc.pl.umap(adata, color=label, show=False, **default_kwargs_dict)
ax.legend(
markerscale=2,
frameon=False,
loc="center left",
bbox_to_anchor=(1, 0.5),
ncol=(1 if len(cats) <= 14 else 2 if len(cats) <= 30 else 3),
)
plt.show()
plt.savefig(output_file, bbox_inches="tight")
def gen_heatmap_class_colors(labels, df):
pal = sns.cubehelix_palette(
len(Counter(labels).keys()),
light=0.9,
dark=0.1,
hue=1,
reverse=True,
start=1,
rot=-2,
)
lut = dict(zip(map(str, Counter(labels).keys()), pal))
colors = pd.Series(labels, index=df.index).map(lut)
return colors
def gen_heatmap_class_dict(classes, label_colors_series):
class_color_dict_df = pd.DataFrame(
{"classes": classes, "color": label_colors_series}
)
class_color_dict_df = class_color_dict_df.drop_duplicates(subset=["classes"])
return dict(zip(class_color_dict_df["classes"], class_color_dict_df["color"]))
def make_colorbar(embs_df, label):
labels = list(embs_df[label])
cell_type_colors = gen_heatmap_class_colors(labels, embs_df)
label_colors = pd.DataFrame(cell_type_colors, columns=[label])
# create dictionary for colors and classes
label_color_dict = gen_heatmap_class_dict(labels, label_colors[label])
return label_colors, label_color_dict
def plot_heatmap(embs_df, emb_dims, label, output_file, kwargs_dict):
sns.set_style("white")
sns.set(font_scale=2)
plt.figure(figsize=(15, 15), dpi=150)
label_colors, label_color_dict = make_colorbar(embs_df, label)
default_kwargs_dict = {
"row_cluster": True,
"col_cluster": True,
"row_colors": label_colors,
"standard_scale": 1,
"linewidths": 0,
"xticklabels": False,
"yticklabels": False,
"figsize": (15, 15),
"center": 0,
"cmap": "magma",
}
if kwargs_dict is not None:
default_kwargs_dict.update(kwargs_dict)
g = sns.clustermap(
embs_df.iloc[:, 0:emb_dims].apply(pd.to_numeric), **default_kwargs_dict
)
plt.setp(g.ax_row_colors.get_xmajorticklabels(), rotation=45, ha="right")
for label_color in list(label_color_dict.keys()):
g.ax_col_dendrogram.bar(
0, 0, color=label_color_dict[label_color], label=label_color, linewidth=0
)
g.ax_col_dendrogram.legend(
title=f"{label}",
loc="lower center",
ncol=4,
bbox_to_anchor=(0.5, 1),
facecolor="white",
)
plt.show()
logger.info(f"Output file: {output_file}")
plt.savefig(output_file, bbox_inches="tight")
class EmbExtractor:
valid_option_dict = {
"model_type": {"Pretrained", "GeneClassifier", "CellClassifier"},
"num_classes": {int},
"emb_mode": {"cls", "cell", "gene"},
"cell_emb_style": {"mean_pool"},
"gene_emb_style": {"mean_pool"},
"filter_data": {None, dict},
"max_ncells": {None, int},
"emb_layer": {-1, 0},
"emb_label": {None, list},
"labels_to_plot": {None, list},
"forward_batch_size": {int},
"token_dictionary_file": {None, str},
"nproc": {int},
"summary_stat": {None, "mean", "median", "exact_mean", "exact_median"},
}
def __init__(
self,
model_type="Pretrained",
num_classes=0,
emb_mode="cls",
cell_emb_style="mean_pool",
gene_emb_style="mean_pool",
filter_data=None,
max_ncells=1000,
emb_layer=-1,
emb_label=None,
labels_to_plot=None,
forward_batch_size=100,
nproc=4,
summary_stat=None,
token_dictionary_file=None,
):
"""
Initialize embedding extractor.
**Parameters:**
model_type : {"Pretrained", "GeneClassifier", "CellClassifier"}
| Whether model is the pretrained Geneformer or a fine-tuned gene or cell classifier.
num_classes : int
| If model is a gene or cell classifier, specify number of classes it was trained to classify.
| For the pretrained Geneformer model, number of classes is 0 as it is not a classifier.
emb_mode : {"cls", "cell", "gene"}
| Whether to output CLS, cell, or gene embeddings.
| CLS embeddings are cell embeddings derived from the CLS token in the front of the rank value encoding.
cell_emb_style : {"mean_pool"}
| Method for summarizing cell embeddings if not using CLS token.
| Currently only option is mean pooling of gene embeddings for given cell.
gene_emb_style : "mean_pool"
| Method for summarizing gene embeddings.
| Currently only option is mean pooling of contextual gene embeddings for given gene.
filter_data : None, dict
| Default is to extract embeddings from all input data.
| Otherwise, dictionary specifying .dataset column name and list of values to filter by.
max_ncells : None, int
| Maximum number of cells to extract embeddings from.
| Default is 1000 cells randomly sampled from input data.
| If None, will extract embeddings from all cells.
emb_layer : {-1, 0}
| Embedding layer to extract.
| The last layer is most specifically weighted to optimize the given learning objective.
| Generally, it is best to extract the 2nd to last layer to get a more general representation.
| -1: 2nd to last layer
| 0: last layer
emb_label : None, list
| List of column name(s) in .dataset to add as labels to embedding output.
labels_to_plot : None, list
| Cell labels to plot.
| Shown as color bar in heatmap.
| Shown as cell color in umap.
| Plotting umap requires labels to plot.
forward_batch_size : int
| Batch size for forward pass.
nproc : int
| Number of CPU processes to use.
summary_stat : {None, "mean", "median", "exact_mean", "exact_median"}
| If exact_mean or exact_median, outputs only exact mean or median embedding of input data.
| If mean or median, outputs only approximated mean or median embedding of input data.
| Non-exact recommended if encountering memory constraints while generating goal embedding positions.
| Non-exact is slower but more memory-efficient.
token_dictionary_file : Path
| Default is the Geneformer token dictionary
| Path to pickle file containing token dictionary (Ensembl ID:token).
**Examples:**
.. code-block :: python
>>> from geneformer import EmbExtractor
>>> embex = EmbExtractor(model_type="CellClassifier",
... num_classes=3,
... emb_mode="cell",
... filter_data={"cell_type":["cardiomyocyte"]},
... max_ncells=1000,
... emb_layer=-1,
... emb_label=["disease", "cell_type"],
... labels_to_plot=["disease", "cell_type"])
"""
self.model_type = model_type
self.num_classes = num_classes
self.emb_mode = emb_mode
self.cell_emb_style = cell_emb_style
self.gene_emb_style = gene_emb_style
self.filter_data = filter_data
self.max_ncells = max_ncells
self.emb_layer = emb_layer
self.emb_label = emb_label
self.labels_to_plot = labels_to_plot
self.token_dictionary_file = token_dictionary_file
self.forward_batch_size = forward_batch_size
self.nproc = nproc
if (summary_stat is not None) and ("exact" in summary_stat):
self.summary_stat = None
self.exact_summary_stat = summary_stat
else:
self.summary_stat = summary_stat
self.exact_summary_stat = None
self.validate_options()
# load token dictionary (Ensembl IDs:token)
if self.token_dictionary_file is None:
token_dictionary_file = TOKEN_DICTIONARY_FILE
with open(token_dictionary_file, "rb") as f:
self.gene_token_dict = pickle.load(f)
self.token_gene_dict = {v: k for k, v in self.gene_token_dict.items()}
self.pad_token_id = self.gene_token_dict.get("<pad>")
def validate_options(self):
# confirm arguments are within valid options and compatible with each other
for attr_name, valid_options in self.valid_option_dict.items():
attr_value = self.__dict__[attr_name]
if not isinstance(attr_value, (list, dict)):
if attr_value in valid_options:
continue
valid_type = False
for option in valid_options:
if (option in [int, list, dict, bool, str]) and isinstance(
attr_value, option
):
valid_type = True
break
if valid_type:
continue
logger.error(
f"Invalid option for {attr_name}. "
f"Valid options for {attr_name}: {valid_options}"
)
raise
if self.filter_data is not None:
for key, value in self.filter_data.items():
if not isinstance(value, list):
self.filter_data[key] = [value]
logger.warning(
"Values in filter_data dict must be lists. "
f"Changing {key} value to list ([{value}])."
)
def extract_embs(
self,
model_directory,
input_data_file,
output_directory,
output_prefix,
output_torch_embs=False,
cell_state=None,
):
"""
Extract embeddings from input data and save as results in output_directory.
**Parameters:**
model_directory : Path
| Path to directory containing model
input_data_file : Path
| Path to directory containing .dataset inputs
output_directory : Path
| Path to directory where embedding data will be saved as csv
output_prefix : str
| Prefix for output file
output_torch_embs : bool
| Whether or not to also output the embeddings as a tensor.
| Note, if true, will output embeddings as both dataframe and tensor.
cell_state : dict
| Cell state key and value for state embedding extraction.
**Examples:**
.. code-block :: python
>>> embs = embex.extract_embs("path/to/model",
... "path/to/input_data",
... "path/to/output_directory",
... "output_prefix")
"""
filtered_input_data = pu.load_and_filter(
self.filter_data, self.nproc, input_data_file
)
if cell_state is not None:
filtered_input_data = pu.filter_by_dict(
filtered_input_data, cell_state, self.nproc
)
downsampled_data = pu.downsample_and_sort(filtered_input_data, self.max_ncells)
model = pu.load_model(
self.model_type, self.num_classes, model_directory, mode="eval"
)
layer_to_quant = pu.quant_layers(model) + self.emb_layer
embs = get_embs(
model=model,
filtered_input_data=downsampled_data,
emb_mode=self.emb_mode,
layer_to_quant=layer_to_quant,
pad_token_id=self.pad_token_id,
forward_batch_size=self.forward_batch_size,
token_gene_dict=self.token_gene_dict,
summary_stat=self.summary_stat,
)
if self.emb_mode == "cell":
if self.summary_stat is None:
embs_df = label_cell_embs(embs, downsampled_data, self.emb_label)
elif self.summary_stat is not None:
embs_df = pd.DataFrame(embs.cpu().numpy()).T
elif self.emb_mode == "gene":
if self.summary_stat is None:
embs_df = label_gene_embs(embs, downsampled_data, self.token_gene_dict)
elif self.summary_stat is not None:
embs_df = pd.DataFrame(embs).T
embs_df.index = [self.token_gene_dict[token] for token in embs_df.index]
elif self.emb_mode == "cls":
embs_df = label_cell_embs(embs, downsampled_data, self.emb_label)
# save embeddings to output_path
if cell_state is None:
output_path = (Path(output_directory) / output_prefix).with_suffix(".csv")
embs_df.to_csv(output_path)
if self.exact_summary_stat == "exact_mean":
embs = embs.mean(dim=0)
emb_dims = pu.get_model_emb_dims(model)
embs_df = pd.DataFrame(
embs_df[0 : emb_dims - 1].mean(axis="rows"),
columns=[self.exact_summary_stat],
).T
elif self.exact_summary_stat == "exact_median":
embs = torch.median(embs, dim=0)[0]
emb_dims = pu.get_model_emb_dims(model)
embs_df = pd.DataFrame(
embs_df[0 : emb_dims - 1].median(axis="rows"),
columns=[self.exact_summary_stat],
).T
if cell_state is not None:
return embs
else:
if output_torch_embs:
return embs_df, embs
else:
return embs_df
def get_state_embs(
self,
cell_states_to_model,
model_directory,
input_data_file,
output_directory,
output_prefix,
output_torch_embs=True,
):
"""
Extract exact mean or exact median cell state embedding positions from input data and save as results in output_directory.
**Parameters:**
cell_states_to_model : None, dict
| Cell states to model if testing perturbations that achieve goal state change.
| Four-item dictionary with keys: state_key, start_state, goal_state, and alt_states
| state_key: key specifying name of column in .dataset that defines the start/goal states
| start_state: value in the state_key column that specifies the start state
| goal_state: value in the state_key column taht specifies the goal end state
| alt_states: list of values in the state_key column that specify the alternate end states
| For example:
| {"state_key": "disease",
| "start_state": "dcm",
| "goal_state": "nf",
| "alt_states": ["hcm", "other1", "other2"]}
model_directory : Path
| Path to directory containing model
input_data_file : Path
| Path to directory containing .dataset inputs
output_directory : Path
| Path to directory where embedding data will be saved as csv
output_prefix : str
| Prefix for output file
output_torch_embs : bool
| Whether or not to also output the embeddings as a tensor.
| Note, if true, will output embeddings as both dataframe and tensor.
**Outputs**
| Outputs state_embs_dict for use with in silico perturber.
| Format is dictionary of embedding positions of each cell state to model shifts from/towards.
| Keys specify each possible cell state to model.
| Values are target embedding positions as torch.tensor.
| For example:
| {"nf": emb_nf,
| "hcm": emb_hcm,
| "dcm": emb_dcm,
| "other1": emb_other1,
| "other2": emb_other2}
"""
pu.validate_cell_states_to_model(cell_states_to_model)
valid_summary_stats = ["exact_mean", "exact_median"]
if self.exact_summary_stat not in valid_summary_stats:
logger.error(
"For extracting state embs, summary_stat in EmbExtractor "
f"must be set to option in {valid_summary_stats}"
)
raise
if self.emb_label is not None:
logger.error(
"For extracting state embs, emb_label should be None since labels are based on state embs dict keys."
)
raise
state_embs_dict = dict()
state_key = cell_states_to_model["state_key"]
for k, v in cell_states_to_model.items():
if k == "state_key":
continue
elif (k == "start_state") or (k == "goal_state"):
state_embs_dict[v] = self.extract_embs(
model_directory,
input_data_file,
output_directory,
output_prefix,
output_torch_embs,
cell_state={state_key: v},
)
else: # k == "alt_states"
for alt_state in v:
state_embs_dict[alt_state] = self.extract_embs(
model_directory,
input_data_file,
output_directory,
output_prefix,
output_torch_embs,
cell_state={state_key: alt_state},
)
output_path = (Path(output_directory) / output_prefix).with_suffix(".pkl")
with open(output_path, "wb") as fp:
pickle.dump(state_embs_dict, fp)
return state_embs_dict
def plot_embs(
self,
embs,
plot_style,
output_directory,
output_prefix,
max_ncells_to_plot=1000,
kwargs_dict=None,
):
"""
Plot embeddings, coloring by provided labels.
**Parameters:**
embs : pandas.core.frame.DataFrame
| Pandas dataframe containing embeddings output from extract_embs
plot_style : str
| Style of plot: "heatmap" or "umap"
output_directory : Path
| Path to directory where plots will be saved as pdf
output_prefix : str
| Prefix for output file
max_ncells_to_plot : None, int
| Maximum number of cells to plot.
| Default is 1000 cells randomly sampled from embeddings.
| If None, will plot embeddings from all cells.
kwargs_dict : dict
| Dictionary of kwargs to pass to plotting function.
**Examples:**
.. code-block :: python
>>> embex.plot_embs(embs=embs,
... plot_style="heatmap",
... output_directory="path/to/output_directory",
... output_prefix="output_prefix")
"""
if plot_style not in ["heatmap", "umap"]:
logger.error(
"Invalid option for 'plot_style'. " "Valid options: {'heatmap','umap'}"
)
raise
if (plot_style == "umap") and (self.labels_to_plot is None):
logger.error("Plotting UMAP requires 'labels_to_plot'. ")
raise
if max_ncells_to_plot is not None:
if max_ncells_to_plot > self.max_ncells:
max_ncells_to_plot = self.max_ncells
logger.warning(
"max_ncells_to_plot must be <= max_ncells. "
f"Changing max_ncells_to_plot to {self.max_ncells}."
)
elif max_ncells_to_plot < self.max_ncells:
embs = embs.sample(max_ncells_to_plot, axis=0)
if self.emb_label is None:
label_len = 0
else:
label_len = len(self.emb_label)
emb_dims = embs.shape[1] - label_len
if self.emb_label is None:
emb_labels = None
else:
emb_labels = embs.columns[emb_dims:]
if plot_style == "umap":
for label in self.labels_to_plot:
if label not in emb_labels:
logger.warning(
f"Label {label} from labels_to_plot "
f"not present in provided embeddings dataframe."
)
continue
output_prefix_label = output_prefix + f"_umap_{label}"
output_file = (
Path(output_directory) / output_prefix_label
).with_suffix(".pdf")
plot_umap(embs, emb_dims, label, output_file, kwargs_dict)
if plot_style == "heatmap":
for label in self.labels_to_plot:
if label not in emb_labels:
logger.warning(
f"Label {label} from labels_to_plot "
f"not present in provided embeddings dataframe."
)
continue
output_prefix_label = output_prefix + f"_heatmap_{label}"
output_file = (
Path(output_directory) / output_prefix_label
).with_suffix(".pdf")
plot_heatmap(embs, emb_dims, label, output_file, kwargs_dict)
|