File size: 22,271 Bytes
94095d1 9e9cca9 94095d1 9e9cca9 94095d1 9e9cca9 94095d1 933ca80 94095d1 933ca80 94095d1 933ca80 94095d1 933ca80 9e9cca9 933ca80 9e9cca9 94095d1 9e9cca9 94095d1 9e9cca9 94095d1 9e9cca9 94095d1 9e9cca9 933ca80 9e9cca9 94095d1 9e9cca9 94095d1 9e9cca9 94095d1 9e9cca9 94095d1 9e9cca9 94095d1 9e9cca9 933ca80 9e9cca9 933ca80 9e9cca9 933ca80 9e9cca9 b07f4b1 9e9cca9 4bddd45 9e9cca9 4bddd45 9e9cca9 4bddd45 9e9cca9 94095d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 |
import json
import logging
import os
import random
from collections import Counter, defaultdict
import numpy as np
import pandas as pd
from scipy.stats import chisquare, ranksums
from sklearn.metrics import accuracy_score, f1_score
from sklearn.model_selection import StratifiedKFold, train_test_split
from . import perturber_utils as pu
logger = logging.getLogger(__name__)
def downsample_and_shuffle(data, max_ncells, max_ncells_per_class, cell_state_dict):
data = data.shuffle(seed=42)
num_cells = len(data)
# if max number of cells is defined, then subsample to this max number
if max_ncells is not None:
if num_cells > max_ncells:
data = data.select([i for i in range(max_ncells)])
if max_ncells_per_class is not None:
class_labels = data[cell_state_dict["state_key"]]
random.seed(42)
subsample_indices = subsample_by_class(class_labels, max_ncells_per_class)
data = data.select(subsample_indices)
return data
# subsample labels to maximum number N per class and return indices
def subsample_by_class(labels, N):
label_indices = defaultdict(list)
# Gather indices for each label
for idx, label in enumerate(labels):
label_indices[label].append(idx)
selected_indices = []
# Select up to N indices for each label
for label, indices in label_indices.items():
if len(indices) > N:
selected_indices.extend(random.sample(indices, N))
else:
selected_indices.extend(indices)
return selected_indices
def rename_cols(data, state_key):
data = data.rename_column(state_key, "label")
return data
def validate_and_clean_cols(train_data, eval_data, classifier):
# validate that data has expected label column and remove others
if classifier == "cell":
label_col = "label"
elif classifier == "gene":
label_col = "labels"
cols_to_keep = [label_col] + ["input_ids", "length"]
if label_col not in train_data.column_names:
logger.error(f"train_data must contain column {label_col} with class labels.")
raise
else:
train_data = remove_cols(train_data, cols_to_keep)
if eval_data is not None:
if label_col not in eval_data.column_names:
logger.error(
f"eval_data must contain column {label_col} with class labels."
)
raise
else:
eval_data = remove_cols(eval_data, cols_to_keep)
return train_data, eval_data
def remove_cols(data, cols_to_keep):
other_cols = list(data.features.keys())
other_cols = [ele for ele in other_cols if ele not in cols_to_keep]
data = data.remove_columns(other_cols)
return data
def remove_rare(data, rare_threshold, label, nproc):
if rare_threshold > 0:
total_cells = len(data)
label_counter = Counter(data[label])
nonrare_label_dict = {
label: [k for k, v in label_counter if (v / total_cells) > rare_threshold]
}
data = pu.filter_by_dict(data, nonrare_label_dict, nproc)
return data
def label_classes(classifier, data, gene_class_dict, nproc):
if classifier == "cell":
label_set = set(data["label"])
elif classifier == "gene":
# remove cells without any of the target genes
def if_contains_label(example):
a = pu.flatten_list(gene_class_dict.values())
b = example["input_ids"]
return not set(a).isdisjoint(b)
data = data.filter(if_contains_label, num_proc=nproc)
label_set = gene_class_dict.keys()
if len(data) == 0:
logger.error(
"No cells remain after filtering for target genes. Check target gene list."
)
raise
class_id_dict = dict(zip(label_set, [i for i in range(len(label_set))]))
id_class_dict = {v: k for k, v in class_id_dict.items()}
def classes_to_ids(example):
if classifier == "cell":
example["label"] = class_id_dict[example["label"]]
elif classifier == "gene":
example["labels"] = label_gene_classes(
example, class_id_dict, gene_class_dict
)
return example
data = data.map(classes_to_ids, num_proc=nproc)
return data, id_class_dict
def label_gene_classes(example, class_id_dict, gene_class_dict):
return [
class_id_dict.get(gene_class_dict.get(token_id, -100), -100)
for token_id in example["input_ids"]
]
def prep_gene_classifier_train_eval_split(
data, targets, labels, train_index, eval_index, max_ncells, iteration_num, num_proc, balance=False
):
# generate cross-validation splits
train_data = prep_gene_classifier_split(
data, targets, labels, train_index, "train", max_ncells, iteration_num, num_proc, balance
)
eval_data = prep_gene_classifier_split(
data, targets, labels, eval_index, "eval", max_ncells, iteration_num, num_proc, balance
)
return train_data, eval_data
def prep_gene_classifier_split(
data, targets, labels, index, subset_name, max_ncells, iteration_num, num_proc, balance=False
):
# generate cross-validation splits
targets = np.array(targets)
labels = np.array(labels)
targets_subset = targets[index]
labels_subset = labels[index]
label_dict_subset = dict(zip(targets_subset, labels_subset))
# function to filter by whether contains train or eval labels
def if_contains_subset_label(example):
a = targets_subset
b = example["input_ids"]
return not set(a).isdisjoint(b)
# filter dataset for examples containing classes for this split
logger.info(f"Filtering data for {subset_name} genes in split {iteration_num}")
subset_data = data.filter(if_contains_subset_label, num_proc=num_proc)
logger.info(
f"Filtered {round((1-len(subset_data)/len(data))*100)}%; {len(subset_data)} remain\n"
)
# balance gene subsets if train
if (subset_name == "train") and (balance is True):
subset_data, label_dict_subset = balance_gene_split(subset_data, label_dict_subset, num_proc)
# subsample to max_ncells
subset_data = downsample_and_shuffle(subset_data, max_ncells, None, None)
# relabel genes for this split
def subset_classes_to_ids(example):
example["labels"] = [
label_dict_subset.get(token_id, -100) for token_id in example["input_ids"]
]
return example
subset_data = subset_data.map(subset_classes_to_ids, num_proc=num_proc)
return subset_data
def prep_gene_classifier_all_data(data, targets, labels, max_ncells, num_proc, balance=False):
targets = np.array(targets)
labels = np.array(labels)
label_dict_train = dict(zip(targets, labels))
# function to filter by whether contains train labels
def if_contains_train_label(example):
a = targets
b = example["input_ids"]
return not set(a).isdisjoint(b)
# filter dataset for examples containing classes for this split
logger.info("Filtering training data for genes to classify.")
train_data = data.filter(if_contains_train_label, num_proc=num_proc)
logger.info(
f"Filtered {round((1-len(train_data)/len(data))*100)}%; {len(train_data)} remain\n"
)
if balance is True:
train_data, label_dict_train = balance_gene_split(train_data, label_dict_train, num_proc)
# subsample to max_ncells
train_data = downsample_and_shuffle(train_data, max_ncells, None, None)
# relabel genes for this split
def train_classes_to_ids(example):
example["labels"] = [
label_dict_train.get(token_id, -100) for token_id in example["input_ids"]
]
return example
train_data = train_data.map(train_classes_to_ids, num_proc=num_proc)
return train_data
def balance_gene_split(subset_data, label_dict_subset, num_proc):
# count occurrence of genes in each label category
label0_counts, label1_counts = count_genes_for_balancing(subset_data, label_dict_subset, num_proc)
label_ratio_0to1 = label0_counts/label1_counts
if 8/10 <= label_ratio_0to1 <= 10/8:
# gene sets already balanced
logger.info(
"Gene sets were already balanced within 0.8-1.25 fold and did not require balancing.\n"
)
return subset_data, label_dict_subset
else:
label_ratio_0to1_orig = label_ratio_0to1+0
label_dict_subset_orig = label_dict_subset.copy()
# balance gene sets
max_ntrials = 25
boost = 1
if label_ratio_0to1 > 10/8:
# downsample label 0
for i in range(max_ntrials):
label0 = 0
label0_genes = [k for k,v in label_dict_subset.items() if v == label0]
label0_ngenes = len(label0_genes)
label0_nremove = max(1,int(np.floor(label0_ngenes - label0_ngenes/(label_ratio_0to1*boost))))
random.seed(i)
label0_remove_genes = random.sample(label0_genes, label0_nremove)
label_dict_subset_new = {k:v for k,v in label_dict_subset.items() if k not in label0_remove_genes}
label0_counts, label1_counts = count_genes_for_balancing(subset_data, label_dict_subset_new, num_proc)
label_ratio_0to1 = label0_counts/label1_counts
if 8/10 <= label_ratio_0to1 <= 10/8:
# if gene sets now balanced, return new filtered data and new label_dict_subset
return filter_data_balanced_genes(subset_data, label_dict_subset_new, num_proc)
elif label_ratio_0to1 > 10/8:
boost = boost*1.1
elif label_ratio_0to1 < 8/10:
boost = boost*0.9
else:
# downsample label 1
for i in range(max_ntrials):
label1 = 1
label1_genes = [k for k,v in label_dict_subset.items() if v == label1]
label1_ngenes = len(label1_genes)
label1_nremove = max(1,int(np.floor(label1_ngenes - label1_ngenes/((1/label_ratio_0to1)*boost))))
random.seed(i)
label1_remove_genes = random.sample(label1_genes, label1_nremove)
label_dict_subset_new = {k:v for k,v in label_dict_subset.items() if k not in label1_remove_genes}
label0_counts, label1_counts = count_genes_for_balancing(subset_data, label_dict_subset_new, num_proc)
label_ratio_0to1 = label0_counts/label1_counts
if 8/10 <= label_ratio_0to1 <= 10/8:
# if gene sets now balanced, return new filtered data and new label_dict_subset
return filter_data_balanced_genes(subset_data, label_dict_subset_new, num_proc)
elif label_ratio_0to1 < 8/10:
boost = boost*1.1
elif label_ratio_0to1 > 10/8:
boost = boost*0.9
assert i+1 == max_ntrials
if (label_ratio_0to1 <= label_ratio_0to1_orig < 8/10) or (10/8 > label_ratio_0to1_orig >= label_ratio_0to1):
label_ratio_0to1 = label_ratio_0to1_orig
label_dict_subset_new = label_dict_subset_orig
logger.warning(
f"Gene sets were not able to be balanced within 0.8-1.25 fold after {max_ntrials} trials. Imbalance level: {label_ratio_0to1}\n"
)
return filter_data_balanced_genes(subset_data, label_dict_subset_new, num_proc)
def count_genes_for_balancing(subset_data, label_dict_subset, num_proc):
def count_targets(example):
labels = [
label_dict_subset.get(token_id, -100) for token_id in example["input_ids"]
]
counter_labels = Counter(labels)
# get count of labels 0 or 1, or if absent, return 0
example["labels_counts"] = [counter_labels.get(0,0),counter_labels.get(1,0)]
return example
subset_data = subset_data.map(count_targets, num_proc=num_proc)
label0_counts = sum([counts[0] for counts in subset_data["labels_counts"]])
label1_counts = sum([counts[1] for counts in subset_data["labels_counts"]])
subset_data = subset_data.remove_columns("labels_counts")
return label0_counts, label1_counts
def filter_data_balanced_genes(subset_data, label_dict_subset, num_proc):
# function to filter by whether contains labels
def if_contains_subset_label(example):
a = list(label_dict_subset.keys())
b = example["input_ids"]
return not set(a).isdisjoint(b)
# filter dataset for examples containing classes for this split
logger.info("Filtering data for balanced genes")
subset_data_len_orig = len(subset_data)
subset_data = subset_data.filter(if_contains_subset_label, num_proc=num_proc)
logger.info(
f"Filtered {round((1-len(subset_data)/subset_data_len_orig)*100)}%; {len(subset_data)} remain\n"
)
return subset_data, label_dict_subset
def balance_attr_splits(
data,
attr_to_split,
attr_to_balance,
eval_size,
max_trials,
pval_threshold,
state_key,
nproc,
):
metadata_df = pd.DataFrame({"split_attr_ids": data[attr_to_split]})
for attr in attr_to_balance:
if attr == state_key:
metadata_df[attr] = data["label"]
else:
metadata_df[attr] = data[attr]
metadata_df = metadata_df.drop_duplicates()
split_attr_ids = list(metadata_df["split_attr_ids"])
assert len(split_attr_ids) == len(set(split_attr_ids))
eval_num = round(len(split_attr_ids) * eval_size)
colnames = (
["trial_num", "train_ids", "eval_ids"]
+ pu.flatten_list(
[
[
f"{attr}_train_mean_or_counts",
f"{attr}_eval_mean_or_counts",
f"{attr}_pval",
]
for attr in attr_to_balance
]
)
+ ["mean_pval"]
)
balance_df = pd.DataFrame(columns=colnames)
data_dict = dict()
trial_num = 1
for i in range(max_trials):
if not all(
count > 1 for count in list(Counter(metadata_df[state_key]).values())
):
logger.error(
f"Cannot balance by {attr_to_split} while retaining at least 1 occurrence of each {state_key} class in both data splits. "
)
raise
eval_base = []
for state in set(metadata_df[state_key]):
eval_base += list(
metadata_df.loc[
metadata_df[state_key][metadata_df[state_key].eq(state)]
.sample(1, random_state=i)
.index
]["split_attr_ids"]
)
non_eval_base = [idx for idx in split_attr_ids if idx not in eval_base]
random.seed(i)
eval_ids = random.sample(non_eval_base, eval_num - len(eval_base)) + eval_base
train_ids = [idx for idx in split_attr_ids if idx not in eval_ids]
df_vals = [trial_num, train_ids, eval_ids]
pvals = []
for attr in attr_to_balance:
train_attr = list(
metadata_df[metadata_df["split_attr_ids"].isin(train_ids)][attr]
)
eval_attr = list(
metadata_df[metadata_df["split_attr_ids"].isin(eval_ids)][attr]
)
if attr == state_key:
# ensure IDs are interpreted as categorical
train_attr = [str(item) for item in train_attr]
eval_attr = [str(item) for item in eval_attr]
if all(isinstance(item, (int, float)) for item in train_attr + eval_attr):
train_attr_mean = np.nanmean(train_attr)
eval_attr_mean = np.nanmean(eval_attr)
pval = ranksums(train_attr, eval_attr, nan_policy="omit").pvalue
df_vals += [train_attr_mean, eval_attr_mean, pval]
elif all(isinstance(item, (str)) for item in train_attr + eval_attr):
obs_counts = Counter(train_attr)
exp_counts = Counter(eval_attr)
all_categ = set(obs_counts.keys()).union(set(exp_counts.keys()))
obs = [obs_counts[cat] for cat in all_categ]
exp = [
exp_counts[cat] * sum(obs) / sum(exp_counts.values())
for cat in all_categ
]
pval = chisquare(f_obs=obs, f_exp=exp).pvalue
train_attr_counts = str(obs_counts).strip("Counter(").strip(")")
eval_attr_counts = str(exp_counts).strip("Counter(").strip(")")
df_vals += [train_attr_counts, eval_attr_counts, pval]
else:
logger.error(
f"Inconsistent data types in attribute {attr}. "
"Cannot infer if continuous or categorical. "
"Must be all numeric (continuous) or all strings (categorical) to balance."
)
raise
pvals += [pval]
df_vals += [np.nanmean(pvals)]
balance_df_i = pd.DataFrame(df_vals, index=colnames).T
balance_df = pd.concat([balance_df, balance_df_i], ignore_index=True)
valid_pvals = [
pval_i
for pval_i in pvals
if isinstance(pval_i, (int, float)) and not np.isnan(pval_i)
]
if all(i >= pval_threshold for i in valid_pvals):
data_dict["train"] = pu.filter_by_dict(
data, {attr_to_split: balance_df_i["train_ids"][0]}, nproc
)
data_dict["test"] = pu.filter_by_dict(
data, {attr_to_split: balance_df_i["eval_ids"][0]}, nproc
)
return data_dict, balance_df
trial_num = trial_num + 1
balance_max_df = balance_df.iloc[balance_df["mean_pval"].idxmax(), :]
data_dict["train"] = pu.filter_by_dict(
data, {attr_to_split: balance_df_i["train_ids"][0]}, nproc
)
data_dict["test"] = pu.filter_by_dict(
data, {attr_to_split: balance_df_i["eval_ids"][0]}, nproc
)
logger.warning(
f"No splits found without significant difference in attr_to_balance among {max_trials} trials. "
f"Selecting optimal split (trial #{balance_max_df['trial_num']}) from completed trials."
)
return data_dict, balance_df
def get_num_classes(id_class_dict):
return len(set(id_class_dict.values()))
def compute_metrics(pred):
labels = pred.label_ids
preds = pred.predictions.argmax(-1)
# calculate accuracy and macro f1 using sklearn's function
if len(labels.shape) == 1:
acc = accuracy_score(labels, preds)
macro_f1 = f1_score(labels, preds, average="macro")
else:
flat_labels = labels.flatten().tolist()
flat_preds = preds.flatten().tolist()
logit_label_paired = [
item for item in list(zip(flat_preds, flat_labels)) if item[1] != -100
]
y_pred = [item[0] for item in logit_label_paired]
y_true = [item[1] for item in logit_label_paired]
acc = accuracy_score(y_true, y_pred)
macro_f1 = f1_score(y_true, y_pred, average="macro")
return {"accuracy": acc, "macro_f1": macro_f1}
def get_default_train_args(model, classifier, data, output_dir):
num_layers = pu.quant_layers(model)
freeze_layers = 0
batch_size = 12
if classifier == "cell":
epochs = 10
evaluation_strategy = "epoch"
load_best_model_at_end = True
else:
epochs = 1
evaluation_strategy = "no"
load_best_model_at_end = False
if num_layers == 6:
default_training_args = {
"learning_rate": 5e-5,
"lr_scheduler_type": "linear",
"warmup_steps": 500,
"per_device_train_batch_size": batch_size,
"per_device_eval_batch_size": batch_size,
}
else:
default_training_args = {
"per_device_train_batch_size": batch_size,
"per_device_eval_batch_size": batch_size,
}
training_args = {
"num_train_epochs": epochs,
"do_train": True,
"do_eval": True,
"evaluation_strategy": evaluation_strategy,
"logging_steps": np.floor(len(data) / batch_size / 8), # 8 evals per epoch
"save_strategy": "epoch",
"group_by_length": False,
"length_column_name": "length",
"disable_tqdm": False,
"weight_decay": 0.001,
"load_best_model_at_end": load_best_model_at_end,
}
training_args.update(default_training_args)
return training_args, freeze_layers
def load_best_model(directory, model_type, num_classes, mode="eval"):
file_dict = dict()
for subdir, dirs, files in os.walk(directory):
for file in files:
if file.endswith("result.json"):
with open(f"{subdir}/{file}", "rb") as fp:
result_json = json.load(fp)
file_dict[f"{subdir}"] = result_json["eval_macro_f1"]
file_df = pd.DataFrame(
{"dir": file_dict.keys(), "eval_macro_f1": file_dict.values()}
)
model_superdir = (
"run-"
+ file_df.iloc[file_df["eval_macro_f1"].idxmax()]["dir"]
.split("_objective_")[2]
.split("_")[0]
)
for subdir, dirs, files in os.walk(f"{directory}/{model_superdir}"):
for file in files:
if file.endswith("model.safetensors"):
model = pu.load_model(model_type, num_classes, f"{subdir}", mode)
return model
class StratifiedKFold3(StratifiedKFold):
def split(self, targets, labels, test_ratio=0.5, groups=None):
s = super().split(targets, labels, groups)
for train_indxs, test_indxs in s:
if test_ratio == 0:
yield train_indxs, test_indxs, None
else:
labels_test = np.array(labels)[test_indxs]
valid_indxs, test_indxs = train_test_split(
test_indxs,
stratify=labels_test,
test_size=test_ratio,
random_state=0,
)
yield train_indxs, valid_indxs, test_indxs
|