File size: 22,271 Bytes
94095d1
9e9cca9
94095d1
9e9cca9
 
 
 
 
 
 
94095d1
9e9cca9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94095d1
933ca80
94095d1
 
 
933ca80
94095d1
 
933ca80
94095d1
 
 
 
 
933ca80
9e9cca9
933ca80
9e9cca9
 
 
94095d1
 
 
9e9cca9
 
94095d1
 
9e9cca9
 
 
 
94095d1
 
9e9cca9
94095d1
9e9cca9
 
933ca80
 
 
 
9e9cca9
94095d1
9e9cca9
 
94095d1
9e9cca9
94095d1
9e9cca9
 
 
94095d1
9e9cca9
94095d1
9e9cca9
 
933ca80
9e9cca9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
933ca80
 
 
9e9cca9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
933ca80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e9cca9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b07f4b1
9e9cca9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bddd45
9e9cca9
4bddd45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e9cca9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bddd45
 
 
 
 
9e9cca9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94095d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
import json
import logging
import os
import random
from collections import Counter, defaultdict

import numpy as np
import pandas as pd
from scipy.stats import chisquare, ranksums
from sklearn.metrics import accuracy_score, f1_score
from sklearn.model_selection import StratifiedKFold, train_test_split

from . import perturber_utils as pu

logger = logging.getLogger(__name__)


def downsample_and_shuffle(data, max_ncells, max_ncells_per_class, cell_state_dict):
    data = data.shuffle(seed=42)
    num_cells = len(data)
    # if max number of cells is defined, then subsample to this max number
    if max_ncells is not None:
        if num_cells > max_ncells:
            data = data.select([i for i in range(max_ncells)])
    if max_ncells_per_class is not None:
        class_labels = data[cell_state_dict["state_key"]]
        random.seed(42)
        subsample_indices = subsample_by_class(class_labels, max_ncells_per_class)
        data = data.select(subsample_indices)
    return data


# subsample labels to maximum number N per class and return indices
def subsample_by_class(labels, N):
    label_indices = defaultdict(list)
    # Gather indices for each label
    for idx, label in enumerate(labels):
        label_indices[label].append(idx)
    selected_indices = []
    # Select up to N indices for each label
    for label, indices in label_indices.items():
        if len(indices) > N:
            selected_indices.extend(random.sample(indices, N))
        else:
            selected_indices.extend(indices)
    return selected_indices


def rename_cols(data, state_key):
    data = data.rename_column(state_key, "label")
    return data


def validate_and_clean_cols(train_data, eval_data, classifier):
    # validate that data has expected label column and remove others
    if classifier == "cell":
        label_col = "label"
    elif classifier == "gene":
        label_col = "labels"

    cols_to_keep = [label_col] + ["input_ids", "length"]
    if label_col not in train_data.column_names:
        logger.error(f"train_data must contain column {label_col} with class labels.")
        raise
    else:
        train_data = remove_cols(train_data, cols_to_keep)

    if eval_data is not None:
        if label_col not in eval_data.column_names:
            logger.error(
                f"eval_data must contain column {label_col} with class labels."
            )
            raise
        else:
            eval_data = remove_cols(eval_data, cols_to_keep)
    return train_data, eval_data


def remove_cols(data, cols_to_keep):
    other_cols = list(data.features.keys())
    other_cols = [ele for ele in other_cols if ele not in cols_to_keep]
    data = data.remove_columns(other_cols)
    return data


def remove_rare(data, rare_threshold, label, nproc):
    if rare_threshold > 0:
        total_cells = len(data)
        label_counter = Counter(data[label])
        nonrare_label_dict = {
            label: [k for k, v in label_counter if (v / total_cells) > rare_threshold]
        }
        data = pu.filter_by_dict(data, nonrare_label_dict, nproc)
    return data


def label_classes(classifier, data, gene_class_dict, nproc):
    if classifier == "cell":
        label_set = set(data["label"])
    elif classifier == "gene":
        # remove cells without any of the target genes
        def if_contains_label(example):
            a = pu.flatten_list(gene_class_dict.values())
            b = example["input_ids"]
            return not set(a).isdisjoint(b)

        data = data.filter(if_contains_label, num_proc=nproc)
        label_set = gene_class_dict.keys()

        if len(data) == 0:
            logger.error(
                "No cells remain after filtering for target genes. Check target gene list."
            )
            raise

    class_id_dict = dict(zip(label_set, [i for i in range(len(label_set))]))
    id_class_dict = {v: k for k, v in class_id_dict.items()}

    def classes_to_ids(example):
        if classifier == "cell":
            example["label"] = class_id_dict[example["label"]]
        elif classifier == "gene":
            example["labels"] = label_gene_classes(
                example, class_id_dict, gene_class_dict
            )
        return example

    data = data.map(classes_to_ids, num_proc=nproc)
    return data, id_class_dict


def label_gene_classes(example, class_id_dict, gene_class_dict):
    return [
        class_id_dict.get(gene_class_dict.get(token_id, -100), -100)
        for token_id in example["input_ids"]
    ]


def prep_gene_classifier_train_eval_split(
    data, targets, labels, train_index, eval_index, max_ncells, iteration_num, num_proc, balance=False
):
    # generate cross-validation splits
    train_data = prep_gene_classifier_split(
        data, targets, labels, train_index, "train", max_ncells, iteration_num, num_proc, balance
    )
    eval_data = prep_gene_classifier_split(
        data, targets, labels, eval_index, "eval", max_ncells, iteration_num, num_proc, balance
    )
    return train_data, eval_data


def prep_gene_classifier_split(
    data, targets, labels, index, subset_name, max_ncells, iteration_num, num_proc, balance=False
):

    # generate cross-validation splits
    targets = np.array(targets)
    labels = np.array(labels)
    targets_subset = targets[index]
    labels_subset = labels[index]
    label_dict_subset = dict(zip(targets_subset, labels_subset))

    # function to filter by whether contains train or eval labels
    def if_contains_subset_label(example):
        a = targets_subset
        b = example["input_ids"]
        return not set(a).isdisjoint(b)

    # filter dataset for examples containing classes for this split
    logger.info(f"Filtering data for {subset_name} genes in split {iteration_num}")
    subset_data = data.filter(if_contains_subset_label, num_proc=num_proc)
    logger.info(
        f"Filtered {round((1-len(subset_data)/len(data))*100)}%; {len(subset_data)} remain\n"
    )

    # balance gene subsets if train
    if (subset_name == "train") and (balance is True):
        subset_data, label_dict_subset = balance_gene_split(subset_data, label_dict_subset, num_proc)

    # subsample to max_ncells
    subset_data = downsample_and_shuffle(subset_data, max_ncells, None, None)

    # relabel genes for this split
    def subset_classes_to_ids(example):
        example["labels"] = [
            label_dict_subset.get(token_id, -100) for token_id in example["input_ids"]
        ]
        return example

    subset_data = subset_data.map(subset_classes_to_ids, num_proc=num_proc)

    return subset_data


def prep_gene_classifier_all_data(data, targets, labels, max_ncells, num_proc, balance=False):
    targets = np.array(targets)
    labels = np.array(labels)
    label_dict_train = dict(zip(targets, labels))

    # function to filter by whether contains train labels
    def if_contains_train_label(example):
        a = targets
        b = example["input_ids"]
        return not set(a).isdisjoint(b)

    # filter dataset for examples containing classes for this split
    logger.info("Filtering training data for genes to classify.")
    train_data = data.filter(if_contains_train_label, num_proc=num_proc)
    logger.info(
        f"Filtered {round((1-len(train_data)/len(data))*100)}%; {len(train_data)} remain\n"
    )

    if balance is True:
        train_data, label_dict_train = balance_gene_split(train_data, label_dict_train, num_proc)
    
    # subsample to max_ncells
    train_data = downsample_and_shuffle(train_data, max_ncells, None, None)

    # relabel genes for this split
    def train_classes_to_ids(example):
        example["labels"] = [
            label_dict_train.get(token_id, -100) for token_id in example["input_ids"]
        ]
        return example

    train_data = train_data.map(train_classes_to_ids, num_proc=num_proc)

    return train_data


def balance_gene_split(subset_data, label_dict_subset, num_proc):
    # count occurrence of genes in each label category
    label0_counts, label1_counts = count_genes_for_balancing(subset_data, label_dict_subset, num_proc)
    label_ratio_0to1 = label0_counts/label1_counts
    
    if 8/10 <= label_ratio_0to1 <= 10/8:
        # gene sets already balanced
        logger.info(
            "Gene sets were already balanced within 0.8-1.25 fold and did not require balancing.\n"
        )
        return subset_data, label_dict_subset
    else:
        label_ratio_0to1_orig = label_ratio_0to1+0
        label_dict_subset_orig = label_dict_subset.copy()
        # balance gene sets
        max_ntrials = 25
        boost = 1
        if label_ratio_0to1 > 10/8:
            # downsample label 0
            for i in range(max_ntrials):
                label0 = 0
                label0_genes = [k for k,v in label_dict_subset.items() if v == label0]
                label0_ngenes = len(label0_genes)
                label0_nremove = max(1,int(np.floor(label0_ngenes - label0_ngenes/(label_ratio_0to1*boost))))
                random.seed(i)
                label0_remove_genes = random.sample(label0_genes, label0_nremove)
                label_dict_subset_new = {k:v for k,v in label_dict_subset.items() if k not in label0_remove_genes}
                label0_counts, label1_counts = count_genes_for_balancing(subset_data, label_dict_subset_new, num_proc)
                label_ratio_0to1 = label0_counts/label1_counts
                if 8/10 <= label_ratio_0to1 <= 10/8:
                    # if gene sets now balanced, return new filtered data and new label_dict_subset
                    return filter_data_balanced_genes(subset_data, label_dict_subset_new, num_proc)
                elif label_ratio_0to1 > 10/8:
                    boost = boost*1.1
                elif label_ratio_0to1 < 8/10:
                    boost = boost*0.9
        else:
            # downsample label 1
            for i in range(max_ntrials):
                label1 = 1
                label1_genes = [k for k,v in label_dict_subset.items() if v == label1]
                label1_ngenes = len(label1_genes)
                label1_nremove = max(1,int(np.floor(label1_ngenes - label1_ngenes/((1/label_ratio_0to1)*boost))))
                random.seed(i)
                label1_remove_genes = random.sample(label1_genes, label1_nremove)
                label_dict_subset_new = {k:v for k,v in label_dict_subset.items() if k not in label1_remove_genes}
                label0_counts, label1_counts = count_genes_for_balancing(subset_data, label_dict_subset_new, num_proc)
                label_ratio_0to1 = label0_counts/label1_counts
                if 8/10 <= label_ratio_0to1 <= 10/8:
                    # if gene sets now balanced, return new filtered data and new label_dict_subset
                    return filter_data_balanced_genes(subset_data, label_dict_subset_new, num_proc)
                elif label_ratio_0to1 < 8/10:
                    boost = boost*1.1
                elif label_ratio_0to1 > 10/8:
                    boost = boost*0.9
                    
        assert i+1 == max_ntrials
        if (label_ratio_0to1 <= label_ratio_0to1_orig < 8/10) or (10/8 > label_ratio_0to1_orig >= label_ratio_0to1):
            label_ratio_0to1 = label_ratio_0to1_orig
            label_dict_subset_new = label_dict_subset_orig
        logger.warning(
            f"Gene sets were not able to be balanced within 0.8-1.25 fold after {max_ntrials} trials. Imbalance level: {label_ratio_0to1}\n"
        )
        return filter_data_balanced_genes(subset_data, label_dict_subset_new, num_proc)


def count_genes_for_balancing(subset_data, label_dict_subset, num_proc):
    def count_targets(example):
        labels = [
            label_dict_subset.get(token_id, -100) for token_id in example["input_ids"]
        ]
        counter_labels = Counter(labels)
        # get count of labels 0 or 1, or if absent, return 0
        example["labels_counts"] = [counter_labels.get(0,0),counter_labels.get(1,0)]
        return example
        
    subset_data = subset_data.map(count_targets, num_proc=num_proc)
 
    label0_counts = sum([counts[0] for counts in subset_data["labels_counts"]])
    label1_counts = sum([counts[1] for counts in subset_data["labels_counts"]])

    subset_data = subset_data.remove_columns("labels_counts")

    return label0_counts, label1_counts


def filter_data_balanced_genes(subset_data, label_dict_subset, num_proc):
    # function to filter by whether contains labels
    def if_contains_subset_label(example):
        a = list(label_dict_subset.keys())
        b = example["input_ids"]
        return not set(a).isdisjoint(b)

    # filter dataset for examples containing classes for this split
    logger.info("Filtering data for balanced genes")
    subset_data_len_orig = len(subset_data)
    subset_data = subset_data.filter(if_contains_subset_label, num_proc=num_proc)
    logger.info(
        f"Filtered {round((1-len(subset_data)/subset_data_len_orig)*100)}%; {len(subset_data)} remain\n"
    )

    return subset_data, label_dict_subset


def balance_attr_splits(
    data,
    attr_to_split,
    attr_to_balance,
    eval_size,
    max_trials,
    pval_threshold,
    state_key,
    nproc,
):
    metadata_df = pd.DataFrame({"split_attr_ids": data[attr_to_split]})
    for attr in attr_to_balance:
        if attr == state_key:
            metadata_df[attr] = data["label"]
        else:
            metadata_df[attr] = data[attr]
    metadata_df = metadata_df.drop_duplicates()

    split_attr_ids = list(metadata_df["split_attr_ids"])
    assert len(split_attr_ids) == len(set(split_attr_ids))
    eval_num = round(len(split_attr_ids) * eval_size)
    colnames = (
        ["trial_num", "train_ids", "eval_ids"]
        + pu.flatten_list(
            [
                [
                    f"{attr}_train_mean_or_counts",
                    f"{attr}_eval_mean_or_counts",
                    f"{attr}_pval",
                ]
                for attr in attr_to_balance
            ]
        )
        + ["mean_pval"]
    )
    balance_df = pd.DataFrame(columns=colnames)
    data_dict = dict()
    trial_num = 1
    for i in range(max_trials):
        if not all(
            count > 1 for count in list(Counter(metadata_df[state_key]).values())
        ):
            logger.error(
                f"Cannot balance by {attr_to_split} while retaining at least 1 occurrence of each {state_key} class in both data splits. "
            )
            raise
        eval_base = []
        for state in set(metadata_df[state_key]):
            eval_base += list(
                metadata_df.loc[
                    metadata_df[state_key][metadata_df[state_key].eq(state)]
                    .sample(1, random_state=i)
                    .index
                ]["split_attr_ids"]
            )
        non_eval_base = [idx for idx in split_attr_ids if idx not in eval_base]
        random.seed(i)
        eval_ids = random.sample(non_eval_base, eval_num - len(eval_base)) + eval_base
        train_ids = [idx for idx in split_attr_ids if idx not in eval_ids]
        df_vals = [trial_num, train_ids, eval_ids]
        pvals = []
        for attr in attr_to_balance:
            train_attr = list(
                metadata_df[metadata_df["split_attr_ids"].isin(train_ids)][attr]
            )
            eval_attr = list(
                metadata_df[metadata_df["split_attr_ids"].isin(eval_ids)][attr]
            )
            if attr == state_key:
                # ensure IDs are interpreted as categorical
                train_attr = [str(item) for item in train_attr]
                eval_attr = [str(item) for item in eval_attr]
            if all(isinstance(item, (int, float)) for item in train_attr + eval_attr):
                train_attr_mean = np.nanmean(train_attr)
                eval_attr_mean = np.nanmean(eval_attr)
                pval = ranksums(train_attr, eval_attr, nan_policy="omit").pvalue
                df_vals += [train_attr_mean, eval_attr_mean, pval]
            elif all(isinstance(item, (str)) for item in train_attr + eval_attr):
                obs_counts = Counter(train_attr)
                exp_counts = Counter(eval_attr)
                all_categ = set(obs_counts.keys()).union(set(exp_counts.keys()))
                obs = [obs_counts[cat] for cat in all_categ]
                exp = [
                    exp_counts[cat] * sum(obs) / sum(exp_counts.values())
                    for cat in all_categ
                ]
                pval = chisquare(f_obs=obs, f_exp=exp).pvalue
                train_attr_counts = str(obs_counts).strip("Counter(").strip(")")
                eval_attr_counts = str(exp_counts).strip("Counter(").strip(")")
                df_vals += [train_attr_counts, eval_attr_counts, pval]
            else:
                logger.error(
                    f"Inconsistent data types in attribute {attr}. "
                    "Cannot infer if continuous or categorical. "
                    "Must be all numeric (continuous) or all strings (categorical) to balance."
                )
                raise
            pvals += [pval]

        df_vals += [np.nanmean(pvals)]
        balance_df_i = pd.DataFrame(df_vals, index=colnames).T
        balance_df = pd.concat([balance_df, balance_df_i], ignore_index=True)
        valid_pvals = [
            pval_i
            for pval_i in pvals
            if isinstance(pval_i, (int, float)) and not np.isnan(pval_i)
        ]
        if all(i >= pval_threshold for i in valid_pvals):
            data_dict["train"] = pu.filter_by_dict(
                data, {attr_to_split: balance_df_i["train_ids"][0]}, nproc
            )
            data_dict["test"] = pu.filter_by_dict(
                data, {attr_to_split: balance_df_i["eval_ids"][0]}, nproc
            )
            return data_dict, balance_df
        trial_num = trial_num + 1
    balance_max_df = balance_df.iloc[balance_df["mean_pval"].idxmax(), :]
    data_dict["train"] = pu.filter_by_dict(
        data, {attr_to_split: balance_df_i["train_ids"][0]}, nproc
    )
    data_dict["test"] = pu.filter_by_dict(
        data, {attr_to_split: balance_df_i["eval_ids"][0]}, nproc
    )
    logger.warning(
        f"No splits found without significant difference in attr_to_balance among {max_trials} trials. "
        f"Selecting optimal split (trial #{balance_max_df['trial_num']}) from completed trials."
    )
    return data_dict, balance_df


def get_num_classes(id_class_dict):
    return len(set(id_class_dict.values()))


def compute_metrics(pred):
    labels = pred.label_ids
    preds = pred.predictions.argmax(-1)

    # calculate accuracy and macro f1 using sklearn's function
    if len(labels.shape) == 1:
        acc = accuracy_score(labels, preds)
        macro_f1 = f1_score(labels, preds, average="macro")
    else:
        flat_labels = labels.flatten().tolist()
        flat_preds = preds.flatten().tolist()
        logit_label_paired = [
            item for item in list(zip(flat_preds, flat_labels)) if item[1] != -100
        ]
        y_pred = [item[0] for item in logit_label_paired]
        y_true = [item[1] for item in logit_label_paired]

        acc = accuracy_score(y_true, y_pred)
        macro_f1 = f1_score(y_true, y_pred, average="macro")

    return {"accuracy": acc, "macro_f1": macro_f1}


def get_default_train_args(model, classifier, data, output_dir):
    num_layers = pu.quant_layers(model)
    freeze_layers = 0
    batch_size = 12
    if classifier == "cell":
        epochs = 10
        evaluation_strategy = "epoch"
        load_best_model_at_end = True
    else:
        epochs = 1
        evaluation_strategy = "no"
        load_best_model_at_end = False

    if num_layers == 6:
        default_training_args = {
            "learning_rate": 5e-5,
            "lr_scheduler_type": "linear",
            "warmup_steps": 500,
            "per_device_train_batch_size": batch_size,
            "per_device_eval_batch_size": batch_size,
        }
    else:
        default_training_args = {
            "per_device_train_batch_size": batch_size,
            "per_device_eval_batch_size": batch_size,
        }

    training_args = {
        "num_train_epochs": epochs,
        "do_train": True,
        "do_eval": True,
        "evaluation_strategy": evaluation_strategy,
        "logging_steps": np.floor(len(data) / batch_size / 8),  # 8 evals per epoch
        "save_strategy": "epoch",
        "group_by_length": False,
        "length_column_name": "length",
        "disable_tqdm": False,
        "weight_decay": 0.001,
        "load_best_model_at_end": load_best_model_at_end,
    }
    training_args.update(default_training_args)

    return training_args, freeze_layers


def load_best_model(directory, model_type, num_classes, mode="eval"):
    file_dict = dict()
    for subdir, dirs, files in os.walk(directory):
        for file in files:
            if file.endswith("result.json"):
                with open(f"{subdir}/{file}", "rb") as fp:
                    result_json = json.load(fp)
                file_dict[f"{subdir}"] = result_json["eval_macro_f1"]
    file_df = pd.DataFrame(
        {"dir": file_dict.keys(), "eval_macro_f1": file_dict.values()}
    )
    model_superdir = (
        "run-"
        + file_df.iloc[file_df["eval_macro_f1"].idxmax()]["dir"]
        .split("_objective_")[2]
        .split("_")[0]
    )

    for subdir, dirs, files in os.walk(f"{directory}/{model_superdir}"):
        for file in files:
            if file.endswith("model.safetensors"):
                model = pu.load_model(model_type, num_classes, f"{subdir}", mode)
    return model


class StratifiedKFold3(StratifiedKFold):
    def split(self, targets, labels, test_ratio=0.5, groups=None):
        s = super().split(targets, labels, groups)
        for train_indxs, test_indxs in s:
            if test_ratio == 0:
                yield train_indxs, test_indxs, None
            else:
                labels_test = np.array(labels)[test_indxs]
                valid_indxs, test_indxs = train_test_split(
                    test_indxs,
                    stratify=labels_test,
                    test_size=test_ratio,
                    random_state=0,
                )
                yield train_indxs, valid_indxs, test_indxs