File size: 44,825 Bytes
efec1c4 2a0dcbe d1931b1 2a0dcbe d1931b1 2a0dcbe 79788b6 2a0dcbe efec1c4 2f25aea efec1c4 f4fea1e efec1c4 2f25aea efec1c4 d20ad0a 2f25aea 9169bfd 2f25aea ea428cb efec1c4 2f25aea efec1c4 2f25aea efec1c4 2f25aea dc1481d 2f25aea 50e921d 2f25aea 50e921d dc1481d 2f25aea 933ca80 2f25aea d20ad0a 2f25aea d20ad0a 2f25aea efec1c4 2f25aea dc1481d efec1c4 2f25aea efec1c4 dc1481d efec1c4 2f25aea acd253c 2f25aea 316d817 2f25aea acd253c dc1481d efec1c4 dc1481d 2f25aea dc1481d 2f25aea efec1c4 2f25aea efec1c4 2f25aea d20ad0a 2f25aea acd253c 8aee0ff 25dd1da 8aee0ff eb038a6 8aee0ff 25dd1da 8aee0ff 2f25aea 25dd1da 316d817 2f25aea 933ca80 2f25aea 933ca80 2f25aea 933ca80 2f25aea 933ca80 2f25aea 316d817 2f25aea 316d817 2f25aea 25dd1da 2f25aea 25dd1da 2f25aea 25dd1da 2f25aea acd253c 188029e 2f25aea 912860d 2f25aea 912860d 2f25aea acd253c 2f25aea acd253c 2f25aea 50e921d 2f25aea acd253c 2f25aea acd253c 2f25aea acd253c 2f25aea acd253c d20ad0a 2f25aea acd253c 2f25aea acd253c 2f25aea acd253c 2f25aea acd253c 2f25aea acd253c 2f25aea acd253c efec1c4 2f25aea 188029e f4fea1e 2f25aea 3072225 2f25aea f4fea1e 2f25aea f4fea1e 2f25aea f4fea1e 2f25aea f4fea1e 2f25aea f4fea1e 2f25aea d20ad0a 2f25aea d20ad0a dc1481d 2f25aea d20ad0a 2f25aea d20ad0a 2f25aea d20ad0a 2f25aea d20ad0a dc1481d 2f25aea dc1481d 2f25aea d20ad0a 2f25aea d20ad0a 2f25aea d20ad0a 2f25aea d20ad0a dc1481d 2f25aea dc1481d 2f25aea d20ad0a 2f25aea d20ad0a 2f25aea d20ad0a 2f25aea d20ad0a 2f25aea d20ad0a 2f25aea d20ad0a 2f25aea d20ad0a 2f25aea f4fea1e 2f25aea efec1c4 2f25aea efec1c4 2f25aea efec1c4 2f25aea efec1c4 d20ad0a acd253c efec1c4 2f25aea efec1c4 ea428cb efec1c4 17f036a 2a0dcbe acd253c 2a0dcbe efec1c4 933ca80 efec1c4 2a0dcbe efec1c4 2a0dcbe efec1c4 2a0dcbe efec1c4 2a0dcbe efec1c4 acd253c efec1c4 2f25aea efec1c4 2f25aea efec1c4 2f25aea efec1c4 d20ad0a efec1c4 2f25aea efec1c4 2f25aea efec1c4 3d06203 9169bfd 2f25aea 9169bfd 2f25aea efec1c4 2f25aea efec1c4 2f25aea efec1c4 9169bfd 2f25aea 9169bfd 2f25aea 9169bfd 2f25aea 9169bfd 2f25aea 9169bfd 2f25aea 9169bfd 2f25aea 9169bfd 9e9cca9 efec1c4 2f25aea 9169bfd efec1c4 9169bfd efec1c4 2f25aea d20ad0a 2f25aea d20ad0a 2f25aea acd253c 2f25aea acd253c 2f25aea efec1c4 17f036a efec1c4 2a0dcbe efec1c4 2a0dcbe efec1c4 2a0dcbe efec1c4 2a0dcbe 79788b6 2f25aea 17f036a 3072225 2f25aea 2a0dcbe 25dd1da 2a0dcbe 25dd1da efec1c4 f4fea1e 2f25aea efec1c4 2f25aea efec1c4 f4fea1e efec1c4 dc1481d 2f25aea dc1481d 2f25aea dc1481d 2f25aea dc1481d 2f25aea efec1c4 2f25aea 933ca80 f4fea1e 2f25aea f4fea1e 2f25aea d20ad0a 2f25aea 8aee0ff efec1c4 2f25aea 933ca80 2f25aea 933ca80 2f25aea efec1c4 316d817 2f25aea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 |
"""
Geneformer in silico perturber stats generator.
**Usage:**
.. code-block :: python
>>> from geneformer import InSilicoPerturberStats
>>> ispstats = InSilicoPerturberStats(mode="goal_state_shift",
... cell_states_to_model={"state_key": "disease",
... "start_state": "dcm",
... "goal_state": "nf",
... "alt_states": ["hcm", "other1", "other2"]})
>>> ispstats.get_stats("path/to/input_data",
... None,
... "path/to/output_directory",
... "output_prefix")
**Description:**
| Aggregates data or calculates stats for in silico perturbations based on type of statistics specified in InSilicoPerturberStats.
| Input data is raw in silico perturbation results in the form of dictionaries outputted by ``in_silico_perturber``.
"""
import logging
import os
import pickle
import random
from pathlib import Path
import numpy as np
import pandas as pd
import statsmodels.stats.multitest as smt
from scipy.stats import ranksums
from sklearn.mixture import GaussianMixture
from tqdm.auto import tqdm, trange
from .perturber_utils import flatten_list, validate_cell_states_to_model
from . import TOKEN_DICTIONARY_FILE, ENSEMBL_DICTIONARY_FILE
logger = logging.getLogger(__name__)
# invert dictionary keys/values
def invert_dict(dictionary):
return {v: k for k, v in dictionary.items()}
def read_dict(cos_sims_dict, cell_or_gene_emb, anchor_token):
if cell_or_gene_emb == "cell":
cell_emb_dict = {
k: v for k, v in cos_sims_dict.items() if v and "cell_emb" in k
}
return [cell_emb_dict]
elif cell_or_gene_emb == "gene":
if anchor_token is None:
gene_emb_dict = {k: v for k, v in cos_sims_dict.items() if v}
else:
gene_emb_dict = {
k: v for k, v in cos_sims_dict.items() if v and anchor_token == k[0]
}
return [gene_emb_dict]
# read raw dictionary files
def read_dictionaries(
input_data_directory,
cell_or_gene_emb,
anchor_token,
cell_states_to_model,
pickle_suffix,
):
file_found = False
file_path_list = []
if cell_states_to_model is None:
dict_list = []
else:
validate_cell_states_to_model(cell_states_to_model)
cell_states_to_model_valid = {
state: value
for state, value in cell_states_to_model.items()
if state != "state_key"
and cell_states_to_model[state] is not None
and cell_states_to_model[state] != []
}
cell_states_list = []
# flatten all state values into list
for state in cell_states_to_model_valid:
value = cell_states_to_model_valid[state]
if isinstance(value, list):
cell_states_list += value
else:
cell_states_list.append(value)
state_dict = {state_value: dict() for state_value in cell_states_list}
for file in os.listdir(input_data_directory):
# process only files with given suffix (e.g. "_raw.pickle")
if file.endswith(pickle_suffix):
file_found = True
file_path_list += [f"{input_data_directory}/{file}"]
for file_path in tqdm(file_path_list):
with open(file_path, "rb") as fp:
cos_sims_dict = pickle.load(fp)
if cell_states_to_model is None:
dict_list += read_dict(cos_sims_dict, cell_or_gene_emb, anchor_token)
else:
for state_value in cell_states_list:
new_dict = read_dict(
cos_sims_dict[state_value], cell_or_gene_emb, anchor_token
)[0]
for key in new_dict:
try:
state_dict[state_value][key] += new_dict[key]
except KeyError:
state_dict[state_value][key] = new_dict[key]
if not file_found:
logger.error(
"No raw data for processing found within provided directory. "
"Please ensure data files end with '{pickle_suffix}'."
)
raise
if cell_states_to_model is None:
return dict_list
else:
return state_dict
# get complete gene list
def get_gene_list(dict_list, mode):
if mode == "cell":
position = 0
elif mode == "gene":
position = 1
gene_set = set()
if isinstance(dict_list, list):
for dict_i in dict_list:
gene_set.update([k[position] for k, v in dict_i.items() if v])
elif isinstance(dict_list, dict):
for state, dict_i in dict_list.items():
gene_set.update([k[position] for k, v in dict_i.items() if v])
else:
logger.error(
"dict_list should be a list, or if modeling shift to goal states, a dict. "
f"{type(dict_list)} is not the correct format."
)
raise
gene_list = list(gene_set)
if mode == "gene":
gene_list.remove("cell_emb")
gene_list.sort()
return gene_list
def token_tuple_to_ensembl_ids(token_tuple, gene_token_id_dict):
try:
return tuple([gene_token_id_dict.get(i, np.nan) for i in token_tuple])
except TypeError:
return gene_token_id_dict.get(token_tuple, np.nan)
def n_detections(token, dict_list, mode, anchor_token):
cos_sim_megalist = []
for dict_i in dict_list:
if mode == "cell":
cos_sim_megalist += dict_i.get((token, "cell_emb"), [])
elif mode == "gene":
cos_sim_megalist += dict_i.get((anchor_token, token), [])
return len(cos_sim_megalist)
def get_fdr(pvalues):
return list(smt.multipletests(pvalues, alpha=0.05, method="fdr_bh")[1])
def get_impact_component(test_value, gaussian_mixture_model):
impact_border = gaussian_mixture_model.means_[0][0]
nonimpact_border = gaussian_mixture_model.means_[1][0]
if test_value > nonimpact_border:
impact_component = 0
elif test_value < impact_border:
impact_component = 1
else:
impact_component_raw = gaussian_mixture_model.predict([[test_value]])[0]
if impact_component_raw == 1:
impact_component = 0
elif impact_component_raw == 0:
impact_component = 1
return impact_component
# aggregate data for single perturbation in multiple cells
def isp_aggregate_grouped_perturb(cos_sims_df, dict_list, genes_perturbed):
names = ["Cosine_sim", "Gene"]
cos_sims_full_dfs = []
if isinstance(genes_perturbed,list):
if len(genes_perturbed)>1:
gene_ids_df = cos_sims_df.loc[np.isin([set(idx) for idx in cos_sims_df["Ensembl_ID"]], set(genes_perturbed)), :]
else:
gene_ids_df = cos_sims_df.loc[np.isin(cos_sims_df["Ensembl_ID"], genes_perturbed), :]
else:
logger.error(
"aggregate_data is for perturbation of single gene or single group of genes. genes_to_perturb should be formatted as list."
)
raise
if gene_ids_df.empty:
logger.error(
"genes_to_perturb not found in data."
)
raise
tokens = gene_ids_df["Gene"]
symbols = gene_ids_df["Gene_name"]
for token, symbol in zip(tokens, symbols):
cos_shift_data = []
for dict_i in dict_list:
cos_shift_data += dict_i.get((token, "cell_emb"), [])
df = pd.DataFrame(columns=names)
df["Cosine_sim"] = cos_shift_data
df["Gene"] = symbol
cos_sims_full_dfs.append(df)
return pd.concat(cos_sims_full_dfs)
def find(variable, x):
try:
if x in variable: # Test if variable is iterable and contains x
return True
elif x == variable:
return True
except (ValueError, TypeError):
return x == variable # Test if variable is x if non-iterable
def isp_aggregate_gene_shifts(
cos_sims_df, dict_list, gene_token_id_dict, gene_id_name_dict, token_dtype
):
cos_shift_data = dict()
for i in trange(cos_sims_df.shape[0]):
token = cos_sims_df["Gene"][i]
for dict_i in dict_list:
if token_dtype == "nontuple":
affected_pairs = [k for k, v in dict_i.items() if k[0] == token]
else:
affected_pairs = [k for k, v in dict_i.items() if find(k[0], token)]
for key in affected_pairs:
if key in cos_shift_data.keys():
cos_shift_data[key] += dict_i.get(key, [])
else:
cos_shift_data[key] = dict_i.get(key, [])
cos_data_mean = {
k: [np.mean(v), np.std(v), len(v)] for k, v in cos_shift_data.items()
}
cos_sims_full_df = pd.DataFrame()
cos_sims_full_df["Perturbed"] = [k[0] for k, v in cos_data_mean.items()]
cos_sims_full_df["Gene_name"] = [
cos_sims_df[cos_sims_df["Gene"] == k[0]]["Gene_name"].item()
for k, v in cos_data_mean.items()
]
cos_sims_full_df["Ensembl_ID"] = [
cos_sims_df[cos_sims_df["Gene"] == k[0]]["Ensembl_ID"].item()
for k, v in cos_data_mean.items()
]
cos_sims_full_df["Affected"] = [k[1] for k, v in cos_data_mean.items()]
cos_sims_full_df["Affected_gene_name"] = [
gene_id_name_dict.get(gene_token_id_dict.get(token, np.nan), np.nan)
for token in cos_sims_full_df["Affected"]
]
cos_sims_full_df["Affected_Ensembl_ID"] = [
gene_token_id_dict.get(token, np.nan) for token in cos_sims_full_df["Affected"]
]
cos_sims_full_df["Cosine_sim_mean"] = [v[0] for k, v in cos_data_mean.items()]
cos_sims_full_df["Cosine_sim_stdev"] = [v[1] for k, v in cos_data_mean.items()]
cos_sims_full_df["N_Detections"] = [v[2] for k, v in cos_data_mean.items()]
specific_val = "cell_emb"
cos_sims_full_df["temp"] = list(cos_sims_full_df["Affected"] == specific_val)
# reorder so cell embs are at the top and all are subordered by magnitude of cosine sim
cos_sims_full_df = cos_sims_full_df.sort_values(
by=(["temp", "Cosine_sim_mean"]), ascending=[False, True]
).drop("temp", axis=1)
return cos_sims_full_df
# stats comparing cos sim shifts towards goal state of test perturbations vs random perturbations
def isp_stats_to_goal_state(
cos_sims_df, result_dict, cell_states_to_model, genes_perturbed
):
if (
("alt_states" not in cell_states_to_model.keys())
or (len(cell_states_to_model["alt_states"]) == 0)
or (cell_states_to_model["alt_states"] == [None])
):
alt_end_state_exists = False
elif (len(cell_states_to_model["alt_states"]) > 0) and (
cell_states_to_model["alt_states"] != [None]
):
alt_end_state_exists = True
# for single perturbation in multiple cells, there are no random perturbations to compare to
if genes_perturbed != "all":
cos_sims_full_df = pd.DataFrame()
cos_shift_data_end = []
token = cos_sims_df["Gene"][0]
cos_shift_data_end += result_dict[cell_states_to_model["goal_state"]].get(
(token, "cell_emb"), []
)
cos_sims_full_df["Shift_to_goal_end"] = [np.mean(cos_shift_data_end)]
if alt_end_state_exists is True:
for alt_state in cell_states_to_model["alt_states"]:
cos_shift_data_alt_state = []
cos_shift_data_alt_state += result_dict.get(alt_state).get(
(token, "cell_emb"), []
)
cos_sims_full_df[f"Shift_to_alt_end_{alt_state}"] = [
np.mean(cos_shift_data_alt_state)
]
# sort by shift to desired state
cos_sims_full_df = cos_sims_full_df.sort_values(
by=["Shift_to_goal_end"], ascending=[False]
)
return cos_sims_full_df
elif genes_perturbed == "all":
goal_end_random_megalist = []
if alt_end_state_exists is True:
alt_end_state_random_dict = {
alt_state: [] for alt_state in cell_states_to_model["alt_states"]
}
for i in trange(cos_sims_df.shape[0]):
token = cos_sims_df["Gene"][i]
goal_end_random_megalist += result_dict[
cell_states_to_model["goal_state"]
].get((token, "cell_emb"), [])
if alt_end_state_exists is True:
for alt_state in cell_states_to_model["alt_states"]:
alt_end_state_random_dict[alt_state] += result_dict[alt_state].get(
(token, "cell_emb"), []
)
# downsample to improve speed of ranksums
if len(goal_end_random_megalist) > 100_000:
random.seed(42)
goal_end_random_megalist = random.sample(
goal_end_random_megalist, k=100_000
)
if alt_end_state_exists is True:
for alt_state in cell_states_to_model["alt_states"]:
if len(alt_end_state_random_dict[alt_state]) > 100_000:
random.seed(42)
alt_end_state_random_dict[alt_state] = random.sample(
alt_end_state_random_dict[alt_state], k=100_000
)
names = [
"Gene",
"Gene_name",
"Ensembl_ID",
"Shift_to_goal_end",
"Goal_end_vs_random_pval",
]
if alt_end_state_exists is True:
[
names.append(f"Shift_to_alt_end_{alt_state}")
for alt_state in cell_states_to_model["alt_states"]
]
names.append(names.pop(names.index("Goal_end_vs_random_pval")))
[
names.append(f"Alt_end_vs_random_pval_{alt_state}")
for alt_state in cell_states_to_model["alt_states"]
]
cos_sims_full_df = pd.DataFrame(columns=names)
n_detections_dict = dict()
for i in trange(cos_sims_df.shape[0]):
token = cos_sims_df["Gene"][i]
name = cos_sims_df["Gene_name"][i]
ensembl_id = cos_sims_df["Ensembl_ID"][i]
goal_end_cos_sim_megalist = result_dict[
cell_states_to_model["goal_state"]
].get((token, "cell_emb"), [])
n_detections_dict[token] = len(goal_end_cos_sim_megalist)
mean_goal_end = np.mean(goal_end_cos_sim_megalist)
pval_goal_end = ranksums(
goal_end_random_megalist, goal_end_cos_sim_megalist
).pvalue
if alt_end_state_exists is True:
alt_end_state_dict = {
alt_state: [] for alt_state in cell_states_to_model["alt_states"]
}
for alt_state in cell_states_to_model["alt_states"]:
alt_end_state_dict[alt_state] = result_dict[alt_state].get(
(token, "cell_emb"), []
)
alt_end_state_dict[f"{alt_state}_mean"] = np.mean(
alt_end_state_dict[alt_state]
)
alt_end_state_dict[f"{alt_state}_pval"] = ranksums(
alt_end_state_random_dict[alt_state],
alt_end_state_dict[alt_state],
).pvalue
results_dict = dict()
results_dict["Gene"] = token
results_dict["Gene_name"] = name
results_dict["Ensembl_ID"] = ensembl_id
results_dict["Shift_to_goal_end"] = mean_goal_end
results_dict["Goal_end_vs_random_pval"] = pval_goal_end
if alt_end_state_exists is True:
for alt_state in cell_states_to_model["alt_states"]:
results_dict[f"Shift_to_alt_end_{alt_state}"] = alt_end_state_dict[
f"{alt_state}_mean"
]
results_dict[
f"Alt_end_vs_random_pval_{alt_state}"
] = alt_end_state_dict[f"{alt_state}_pval"]
cos_sims_df_i = pd.DataFrame(results_dict, index=[i])
cos_sims_full_df = pd.concat([cos_sims_full_df, cos_sims_df_i])
cos_sims_full_df["Goal_end_FDR"] = get_fdr(
list(cos_sims_full_df["Goal_end_vs_random_pval"])
)
if alt_end_state_exists is True:
for alt_state in cell_states_to_model["alt_states"]:
cos_sims_full_df[f"Alt_end_FDR_{alt_state}"] = get_fdr(
list(cos_sims_full_df[f"Alt_end_vs_random_pval_{alt_state}"])
)
# quantify number of detections of each gene
cos_sims_full_df["N_Detections"] = [
n_detections_dict[token] for token in cos_sims_full_df["Gene"]
]
# sort by shift to desired state
cos_sims_full_df["Sig"] = [
1 if fdr < 0.05 else 0 for fdr in cos_sims_full_df["Goal_end_FDR"]
]
cos_sims_full_df = cos_sims_full_df.sort_values(
by=["Sig", "Shift_to_goal_end", "Goal_end_FDR"],
ascending=[False, False, True],
)
return cos_sims_full_df
# stats comparing cos sim shifts of test perturbations vs null distribution
def isp_stats_vs_null(cos_sims_df, dict_list, null_dict_list):
cos_sims_full_df = cos_sims_df.copy()
cos_sims_full_df["Test_avg_shift"] = np.zeros(cos_sims_df.shape[0], dtype=float)
cos_sims_full_df["Null_avg_shift"] = np.zeros(cos_sims_df.shape[0], dtype=float)
cos_sims_full_df["Test_vs_null_avg_shift"] = np.zeros(
cos_sims_df.shape[0], dtype=float
)
cos_sims_full_df["Test_vs_null_pval"] = np.zeros(cos_sims_df.shape[0], dtype=float)
cos_sims_full_df["Test_vs_null_FDR"] = np.zeros(cos_sims_df.shape[0], dtype=float)
cos_sims_full_df["N_Detections_test"] = np.zeros(
cos_sims_df.shape[0], dtype="uint32"
)
cos_sims_full_df["N_Detections_null"] = np.zeros(
cos_sims_df.shape[0], dtype="uint32"
)
for i in trange(cos_sims_df.shape[0]):
token = cos_sims_df["Gene"][i]
test_shifts = []
null_shifts = []
for dict_i in dict_list:
test_shifts += dict_i.get((token, "cell_emb"), [])
for dict_i in null_dict_list:
null_shifts += dict_i.get((token, "cell_emb"), [])
cos_sims_full_df.loc[i, "Test_avg_shift"] = np.mean(test_shifts)
cos_sims_full_df.loc[i, "Null_avg_shift"] = np.mean(null_shifts)
cos_sims_full_df.loc[i, "Test_vs_null_avg_shift"] = np.mean(
test_shifts
) - np.mean(null_shifts)
cos_sims_full_df.loc[i, "Test_vs_null_pval"] = ranksums(
test_shifts, null_shifts, nan_policy="omit"
).pvalue
# remove nan values
cos_sims_full_df.Test_vs_null_pval = np.where(
np.isnan(cos_sims_full_df.Test_vs_null_pval),
1,
cos_sims_full_df.Test_vs_null_pval,
)
cos_sims_full_df.loc[i, "N_Detections_test"] = len(test_shifts)
cos_sims_full_df.loc[i, "N_Detections_null"] = len(null_shifts)
cos_sims_full_df["Test_vs_null_FDR"] = get_fdr(
cos_sims_full_df["Test_vs_null_pval"]
)
cos_sims_full_df["Sig"] = [
1 if fdr < 0.05 else 0 for fdr in cos_sims_full_df["Test_vs_null_FDR"]
]
cos_sims_full_df = cos_sims_full_df.sort_values(
by=["Sig", "Test_vs_null_avg_shift", "Test_vs_null_FDR"],
ascending=[False, False, True],
)
return cos_sims_full_df
# stats for identifying perturbations with largest effect within a given set of cells
# fits a mixture model to 2 components (impact vs. non-impact) and
# reports the most likely component for each test perturbation
# Note: because assumes given perturbation has a consistent effect in the cells tested,
# we recommend only using the mixture model strategy with uniform cell populations
def isp_stats_mixture_model(cos_sims_df, dict_list, combos, anchor_token):
names = ["Gene", "Gene_name", "Ensembl_ID"]
if combos == 0:
names += ["Test_avg_shift"]
elif combos == 1:
names += [
"Anchor_shift",
"Test_token_shift",
"Sum_of_indiv_shifts",
"Combo_shift",
"Combo_minus_sum_shift",
]
names += ["Impact_component", "Impact_component_percent"]
cos_sims_full_df = pd.DataFrame(columns=names)
avg_values = []
gene_names = []
for i in trange(cos_sims_df.shape[0]):
token = cos_sims_df["Gene"][i]
name = cos_sims_df["Gene_name"][i]
ensembl_id = cos_sims_df["Ensembl_ID"][i]
cos_shift_data = []
for dict_i in dict_list:
if (combos == 0) and (anchor_token is not None):
cos_shift_data += dict_i.get((anchor_token, token), [])
else:
cos_shift_data += dict_i.get((token, "cell_emb"), [])
# Extract values for current gene
if combos == 0:
test_values = cos_shift_data
elif combos == 1:
test_values = []
for tup in cos_shift_data:
test_values.append(tup[2])
if len(test_values) > 0:
avg_value = np.mean(test_values)
avg_values.append(avg_value)
gene_names.append(name)
# fit Gaussian mixture model to dataset of mean for each gene
avg_values_to_fit = np.array(avg_values).reshape(-1, 1)
gm = GaussianMixture(n_components=2, random_state=0).fit(avg_values_to_fit)
for i in trange(cos_sims_df.shape[0]):
token = cos_sims_df["Gene"][i]
name = cos_sims_df["Gene_name"][i]
ensembl_id = cos_sims_df["Ensembl_ID"][i]
cos_shift_data = []
for dict_i in dict_list:
if (combos == 0) and (anchor_token is not None):
cos_shift_data += dict_i.get((anchor_token, token), [])
else:
cos_shift_data += dict_i.get((token, "cell_emb"), [])
if combos == 0:
mean_test = np.mean(cos_shift_data)
impact_components = [
get_impact_component(value, gm) for value in cos_shift_data
]
elif combos == 1:
anchor_cos_sim_megalist = [
anchor for anchor, token, combo in cos_shift_data
]
token_cos_sim_megalist = [token for anchor, token, combo in cos_shift_data]
anchor_plus_token_cos_sim_megalist = [
1 - ((1 - anchor) + (1 - token))
for anchor, token, combo in cos_shift_data
]
combo_anchor_token_cos_sim_megalist = [
combo for anchor, token, combo in cos_shift_data
]
combo_minus_sum_cos_sim_megalist = [
combo - (1 - ((1 - anchor) + (1 - token)))
for anchor, token, combo in cos_shift_data
]
mean_anchor = np.mean(anchor_cos_sim_megalist)
mean_token = np.mean(token_cos_sim_megalist)
mean_sum = np.mean(anchor_plus_token_cos_sim_megalist)
mean_test = np.mean(combo_anchor_token_cos_sim_megalist)
mean_combo_minus_sum = np.mean(combo_minus_sum_cos_sim_megalist)
impact_components = [
get_impact_component(value, gm)
for value in combo_anchor_token_cos_sim_megalist
]
impact_component = get_impact_component(mean_test, gm)
impact_component_percent = np.mean(impact_components) * 100
data_i = [token, name, ensembl_id]
if combos == 0:
data_i += [mean_test]
elif combos == 1:
data_i += [
mean_anchor,
mean_token,
mean_sum,
mean_test,
mean_combo_minus_sum,
]
data_i += [impact_component, impact_component_percent]
cos_sims_df_i = pd.DataFrame(dict(zip(names, data_i)), index=[i])
cos_sims_full_df = pd.concat([cos_sims_full_df, cos_sims_df_i])
# quantify number of detections of each gene
cos_sims_full_df["N_Detections"] = [
n_detections(i, dict_list, "gene", anchor_token)
for i in cos_sims_full_df["Gene"]
]
if combos == 0:
cos_sims_full_df = cos_sims_full_df.sort_values(
by=["Impact_component", "Test_avg_shift"], ascending=[False, True]
)
elif combos == 1:
cos_sims_full_df = cos_sims_full_df.sort_values(
by=["Impact_component", "Combo_minus_sum_shift"], ascending=[False, True]
)
return cos_sims_full_df
class InSilicoPerturberStats:
valid_option_dict = {
"mode": {
"goal_state_shift",
"vs_null",
"mixture_model",
"aggregate_data",
"aggregate_gene_shifts",
},
"genes_perturbed": {"all", list},
"combos": {0, 1},
"anchor_gene": {None, str},
"cell_states_to_model": {None, dict},
"pickle_suffix": {None, str},
}
def __init__(
self,
mode="mixture_model",
genes_perturbed="all",
combos=0,
anchor_gene=None,
cell_states_to_model=None,
pickle_suffix="_raw.pickle",
token_dictionary_file=TOKEN_DICTIONARY_FILE,
gene_name_id_dictionary_file=ENSEMBL_DICTIONARY_FILE,
):
"""
Initialize in silico perturber stats generator.
**Parameters:**
mode : {"goal_state_shift", "vs_null", "mixture_model", "aggregate_data", "aggregate_gene_shifts"}
| Type of stats.
| "goal_state_shift": perturbation vs. random for desired cell state shift
| "vs_null": perturbation vs. null from provided null distribution dataset
| "mixture_model": perturbation in impact vs. no impact component of mixture model (no goal direction)
| "aggregate_data": aggregates cosine shifts for single perturbation in multiple cells
| "aggregate_gene_shifts": aggregates cosine shifts of genes in response to perturbation(s)
genes_perturbed : "all", list
| Genes perturbed in isp experiment.
| Default is assuming genes_to_perturb in isp experiment was "all" (each gene in each cell).
| Otherwise, may provide a list of ENSEMBL IDs of genes perturbed as a group all together.
combos : {0,1,2}
| Whether genex perturbed in isp experiment were perturbed individually (0), in pairs (1), or in triplets (2).
anchor_gene : None, str
| ENSEMBL ID of gene to use as anchor in combination perturbations or in testing effect on downstream genes.
| For example, if combos=1 and anchor_gene="ENSG00000136574":
| analyzes data for anchor gene perturbed in combination with each other gene.
| However, if combos=0 and anchor_gene="ENSG00000136574":
| analyzes data for the effect of anchor gene's perturbation on the embedding of each other gene.
cell_states_to_model: None, dict
| Cell states to model if testing perturbations that achieve goal state change.
| Four-item dictionary with keys: state_key, start_state, goal_state, and alt_states
| state_key: key specifying name of column in .dataset that defines the start/goal states
| start_state: value in the state_key column that specifies the start state
| goal_state: value in the state_key column taht specifies the goal end state
| alt_states: list of values in the state_key column that specify the alternate end states
| For example: {"state_key": "disease",
| "start_state": "dcm",
| "goal_state": "nf",
| "alt_states": ["hcm", "other1", "other2"]}
token_dictionary_file : Path
| Path to pickle file containing token dictionary (Ensembl ID:token).
gene_name_id_dictionary_file : Path
| Path to pickle file containing gene name to ID dictionary (gene name:Ensembl ID).
"""
self.mode = mode
self.genes_perturbed = genes_perturbed
self.combos = combos
self.anchor_gene = anchor_gene
self.cell_states_to_model = cell_states_to_model
self.pickle_suffix = pickle_suffix
self.validate_options()
# load token dictionary (Ensembl IDs:token)
with open(token_dictionary_file, "rb") as f:
self.gene_token_dict = pickle.load(f)
# load gene name dictionary (gene name:Ensembl ID)
with open(gene_name_id_dictionary_file, "rb") as f:
self.gene_name_id_dict = pickle.load(f)
if anchor_gene is None:
self.anchor_token = None
else:
self.anchor_token = self.gene_token_dict[self.anchor_gene]
def validate_options(self):
for attr_name, valid_options in self.valid_option_dict.items():
attr_value = self.__dict__[attr_name]
if type(attr_value) not in {list, dict}:
if attr_name in {"anchor_gene"}:
continue
elif attr_value in valid_options:
continue
valid_type = False
for option in valid_options:
if (option in [str, int, list, dict]) and isinstance(
attr_value, option
):
valid_type = True
break
if not valid_type:
logger.error(
f"Invalid option for {attr_name}. "
f"Valid options for {attr_name}: {valid_options}"
)
raise
if self.cell_states_to_model is not None:
if len(self.cell_states_to_model.items()) == 1:
logger.warning(
"The single value dictionary for cell_states_to_model will be "
"replaced with a dictionary with named keys for start, goal, and alternate states. "
"Please specify state_key, start_state, goal_state, and alt_states "
"in the cell_states_to_model dictionary for future use. "
"For example, cell_states_to_model={"
"'state_key': 'disease', "
"'start_state': 'dcm', "
"'goal_state': 'nf', "
"'alt_states': ['hcm', 'other1', 'other2']}"
)
for key, value in self.cell_states_to_model.items():
if (len(value) == 3) and isinstance(value, tuple):
if (
isinstance(value[0], list)
and isinstance(value[1], list)
and isinstance(value[2], list)
):
if len(value[0]) == 1 and len(value[1]) == 1:
all_values = value[0] + value[1] + value[2]
if len(all_values) == len(set(all_values)):
continue
# reformat to the new named key format
state_values = flatten_list(list(self.cell_states_to_model.values()))
self.cell_states_to_model = {
"state_key": list(self.cell_states_to_model.keys())[0],
"start_state": state_values[0][0],
"goal_state": state_values[1][0],
"alt_states": state_values[2:][0],
}
elif set(self.cell_states_to_model.keys()) == {
"state_key",
"start_state",
"goal_state",
"alt_states",
}:
if (
(self.cell_states_to_model["state_key"] is None)
or (self.cell_states_to_model["start_state"] is None)
or (self.cell_states_to_model["goal_state"] is None)
):
logger.error(
"Please specify 'state_key', 'start_state', and 'goal_state' in cell_states_to_model."
)
raise
if (
self.cell_states_to_model["start_state"]
== self.cell_states_to_model["goal_state"]
):
logger.error("All states must be unique.")
raise
if self.cell_states_to_model["alt_states"] is not None:
if not isinstance(self.cell_states_to_model["alt_states"], list):
logger.error(
"self.cell_states_to_model['alt_states'] must be a list (even if it is one element)."
)
raise
if len(self.cell_states_to_model["alt_states"]) != len(
set(self.cell_states_to_model["alt_states"])
):
logger.error("All states must be unique.")
raise
elif set(self.cell_states_to_model.keys()) == {
"state_key",
"start_state",
"goal_state",
}:
self.cell_states_to_model["alt_states"] = []
else:
logger.error(
"cell_states_to_model must only have the following four keys: "
"'state_key', 'start_state', 'goal_state', 'alt_states'."
"For example, cell_states_to_model={"
"'state_key': 'disease', "
"'start_state': 'dcm', "
"'goal_state': 'nf', "
"'alt_states': ['hcm', 'other1', 'other2']}"
)
raise
if self.anchor_gene is not None:
self.anchor_gene = None
logger.warning(
"anchor_gene set to None. "
"Currently, anchor gene not available "
"when modeling multiple cell states."
)
if self.combos > 0:
if self.anchor_gene is None:
logger.error(
"Currently, stats are only supported for combination "
"in silico perturbation run with anchor gene. Please add "
"anchor gene when using with combos > 0. "
)
raise
if (self.mode == "mixture_model") and (self.genes_perturbed != "all"):
logger.error(
"Mixture model mode requires multiple gene perturbations to fit model "
"so is incompatible with a single grouped perturbation."
)
raise
if (self.mode == "aggregate_data") and (self.genes_perturbed == "all"):
logger.error(
"Simple data aggregation mode is for single perturbation in multiple cells "
"so is incompatible with a genes_perturbed being 'all'."
)
raise
def get_stats(
self,
input_data_directory,
null_dist_data_directory,
output_directory,
output_prefix,
null_dict_list=None,
):
"""
Get stats for in silico perturbation data and save as results in output_directory.
**Parameters:**
input_data_directory : Path
| Path to directory containing cos_sim dictionary inputs
null_dist_data_directory : Path
| Path to directory containing null distribution cos_sim dictionary inputs
output_directory : Path
| Path to directory where perturbation data will be saved as .csv
output_prefix : str
| Prefix for output .csv
null_dict_list: list[dict]
| List of loaded null distribution dictionary if more than one comparison vs. the null is to be performed
**Outputs:**
Definition of possible columns in .csv output file.
| Of note, not all columns will be present in all output files.
| Some columns are specific to particular perturbation modes.
| "Gene": gene token
| "Gene_name": gene name
| "Ensembl_ID": gene Ensembl ID
| "N_Detections": number of cells in which each gene or gene combination was detected in the input dataset
| "Sig": 1 if FDR<0.05, otherwise 0
| "Shift_to_goal_end": cosine shift from start state towards goal end state in response to given perturbation
| "Shift_to_alt_end": cosine shift from start state towards alternate end state in response to given perturbation
| "Goal_end_vs_random_pval": pvalue of cosine shift from start state towards goal end state by Wilcoxon
| pvalue compares shift caused by perturbing given gene compared to random genes
| "Alt_end_vs_random_pval": pvalue of cosine shift from start state towards alternate end state by Wilcoxon
| pvalue compares shift caused by perturbing given gene compared to random genes
| "Goal_end_FDR": Benjamini-Hochberg correction of "Goal_end_vs_random_pval"
| "Alt_end_FDR": Benjamini-Hochberg correction of "Alt_end_vs_random_pval"
| "Test_avg_shift": cosine shift in response to given perturbation in cells from test distribution
| "Null_avg_shift": cosine shift in response to given perturbation in cells from null distribution (e.g. random cells)
| "Test_vs_null_avg_shift": difference in cosine shift in cells from test vs. null distribution
| (i.e. "Test_avg_shift" minus "Null_avg_shift")
| "Test_vs_null_pval": pvalue of cosine shift in test vs. null distribution
| "Test_vs_null_FDR": Benjamini-Hochberg correction of "Test_vs_null_pval"
| "N_Detections_test": "N_Detections" in cells from test distribution
| "N_Detections_null": "N_Detections" in cells from null distribution
| "Anchor_shift": cosine shift in response to given perturbation of anchor gene
| "Test_token_shift": cosine shift in response to given perturbation of test gene
| "Sum_of_indiv_shifts": sum of cosine shifts in response to individually perturbing test and anchor genes
| "Combo_shift": cosine shift in response to given perturbation of both anchor and test gene(s) in combination
| "Combo_minus_sum_shift": difference of cosine shifts in response combo perturbation vs. sum of individual perturbations
| (i.e. "Combo_shift" minus "Sum_of_indiv_shifts")
| "Impact_component": whether the given perturbation was modeled to be within the impact component by the mixture model
| 1: within impact component; 0: not within impact component
| "Impact_component_percent": percent of cells in which given perturbation was modeled to be within impact component
| In case of aggregating data / gene shifts:
| "Perturbed": ID(s) of gene(s) being perturbed
| "Affected": ID of affected gene or "cell_emb" indicating the impact on the cell embedding as a whole
| "Cosine_sim_mean": mean of cosine similarity of cell or affected gene in original vs. perturbed
| "Cosine_sim_stdev": standard deviation of cosine similarity of cell or affected gene in original vs. perturbed
"""
if self.mode not in [
"goal_state_shift",
"vs_null",
"mixture_model",
"aggregate_data",
"aggregate_gene_shifts",
]:
logger.error(
"Currently, only modes available are stats for goal_state_shift, "
"vs_null (comparing to null distribution), "
"mixture_model (fitting mixture model for perturbations with or without impact), "
"and aggregating data for single perturbations or for gene embedding shifts."
)
raise
self.gene_token_id_dict = invert_dict(self.gene_token_dict)
self.gene_id_name_dict = invert_dict(self.gene_name_id_dict)
# obtain total gene list
if (self.combos == 0) and (self.anchor_token is not None):
# cos sim data for effect of gene perturbation on the embedding of each other gene
dict_list = read_dictionaries(
input_data_directory,
"gene",
self.anchor_token,
self.cell_states_to_model,
self.pickle_suffix,
)
gene_list = get_gene_list(dict_list, "gene")
elif (
(self.combos == 0)
and (self.anchor_token is None)
and (self.mode == "aggregate_gene_shifts")
):
dict_list = read_dictionaries(
input_data_directory,
"gene",
self.anchor_token,
self.cell_states_to_model,
self.pickle_suffix,
)
gene_list = get_gene_list(dict_list, "cell")
else:
# cos sim data for effect of gene perturbation on the embedding of each cell
dict_list = read_dictionaries(
input_data_directory,
"cell",
self.anchor_token,
self.cell_states_to_model,
self.pickle_suffix,
)
gene_list = get_gene_list(dict_list, "cell")
# initiate results dataframe
cos_sims_df_initial = pd.DataFrame(
{
"Gene": gene_list,
"Gene_name": [self.token_to_gene_name(item) for item in gene_list],
"Ensembl_ID": [
token_tuple_to_ensembl_ids(genes, self.gene_token_id_dict)
if self.genes_perturbed != "all"
else self.gene_token_id_dict[genes[1]]
if isinstance(genes, tuple)
else self.gene_token_id_dict[genes]
for genes in gene_list
],
},
index=[i for i in range(len(gene_list))],
)
if self.mode == "goal_state_shift":
cos_sims_df = isp_stats_to_goal_state(
cos_sims_df_initial,
dict_list,
self.cell_states_to_model,
self.genes_perturbed,
)
elif self.mode == "vs_null":
if null_dict_list is None:
null_dict_list = read_dictionaries(
null_dist_data_directory,
"cell",
self.anchor_token,
self.cell_states_to_model,
self.pickle_suffix,
)
cos_sims_df = isp_stats_vs_null(
cos_sims_df_initial, dict_list, null_dict_list
)
elif self.mode == "mixture_model":
cos_sims_df = isp_stats_mixture_model(
cos_sims_df_initial, dict_list, self.combos, self.anchor_token
)
elif self.mode == "aggregate_data":
cos_sims_df = isp_aggregate_grouped_perturb(cos_sims_df_initial, dict_list, self.genes_perturbed)
elif self.mode == "aggregate_gene_shifts":
if (self.genes_perturbed == "all") and (self.combos == 0):
tuple_types = [True if isinstance(genes, tuple) else False for genes in gene_list]
if all(tuple_types):
token_dtype = "tuple"
elif not any(tuple_types):
token_dtype = "nontuple"
else:
token_dtype = "mix"
else:
token_dtype = "mix"
cos_sims_df = isp_aggregate_gene_shifts(
cos_sims_df_initial,
dict_list,
self.gene_token_id_dict,
self.gene_id_name_dict,
token_dtype
)
# save perturbation stats to output_path
output_path = (Path(output_directory) / output_prefix).with_suffix(".csv")
cos_sims_df.to_csv(output_path)
def token_to_gene_name(self, item):
if np.issubdtype(type(item), np.integer):
return self.gene_id_name_dict.get(
self.gene_token_id_dict.get(item, np.nan), np.nan
)
if isinstance(item, tuple):
return tuple(
[
self.gene_id_name_dict.get(
self.gene_token_id_dict.get(i, np.nan), np.nan
)
for i in item
]
)
|