File size: 13,390 Bytes
933ca80 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
"""
Geneformer multi-task cell classifier.
**Input data:**
| Single-cell transcriptomes as Geneformer rank value encodings with cell state labels for each task in Geneformer .dataset format (generated from single-cell RNAseq data by tokenizer.py). Must contain "unique_cell_id" column for logging.
**Usage:**
.. code-block :: python
>>> from geneformer import MTLClassifier
>>> mc = MTLClassifier(task_columns = ["task1", "task2"],
... study_name = "mtl",
... pretrained_path = "/path/pretrained/model",
... train_path = "/path/train/set",
... val_path = "/path/eval/set",
... test_path = "/path/test/set",
... model_save_path = "/results/directory/save_path",
... trials_result_path = "/results/directory/results.txt",
... results_dir = "/results/directory",
... tensorboard_log_dir = "/results/tblogdir",
... hyperparameters = hyperparameters)
>>> mc.run_optuna_study()
>>> mc.load_and_evaluate_test_model()
>>> mc.save_model_without_heads()
"""
import logging
import os
from .mtl import train_utils
from .mtl import utils
from .mtl import eval_utils
logger = logging.getLogger(__name__)
class MTLClassifier:
valid_option_dict = {
"task_columns": {list},
"train_path": {None, str},
"val_path": {None, str},
"test_path": {None, str},
"pretrained_path": {None, str},
"model_save_path": {None, str},
"results_dir": {None, str},
"batch_size": {None, int},
"n_trials": {None, int},
"study_name": {None, str},
"max_layers_to_freeze": {None, dict},
"epochs": {None, int},
"tensorboard_log_dir": {None, str},
"use_data_parallel": {None, bool},
"use_attention_pooling": {None, bool},
"use_task_weights": {None, bool},
"hyperparameters": {None, dict},
"manual_hyperparameters": {None, dict},
"use_manual_hyperparameters": {None, bool},
"use_wandb": {None, bool},
"wandb_project": {None, str},
"gradient_clipping": {None, bool},
"max_grad_norm": {None, int, float},
"seed": {None, int},
"trials_result_path": {None, str},
}
def __init__(
self,
task_columns=None,
train_path=None,
val_path=None,
test_path=None,
pretrained_path=None,
model_save_path=None,
results_dir=None,
trials_result_path=None,
batch_size=4,
n_trials=15,
study_name="mtl",
max_layers_to_freeze=None,
epochs=1,
tensorboard_log_dir="/results/tblogdir",
use_data_parallel=False,
use_attention_pooling=True,
use_task_weights=True,
hyperparameters=None, # Default is None
manual_hyperparameters=None, # Default is None
use_manual_hyperparameters=False, # Default is False
use_wandb=False,
wandb_project=None,
gradient_clipping=False,
max_grad_norm=None,
seed=42 # Default seed value
):
"""
Initialize Geneformer multi-task classifier.
**Parameters:**
task_columns : list
| List of tasks for cell state classification
| Input data columns are labeled with corresponding task names
study_name : None, str
| Study name for labeling output files
pretrained_path : None, str
| Path to pretrained model
train_path : None, str
| Path to training dataset with task columns and "unique_cell_id" column
val_path : None, str
| Path to validation dataset with task columns and "unique_cell_id" column
test_path : None, str
| Path to test dataset with task columns and "unique_cell_id" column
model_save_path : None, str
| Path to directory to save output model (either full model or model without heads)
trials_result_path : None, str
| Path to directory to save hyperparameter tuning trial results
results_dir : None, str
| Path to directory to save results
tensorboard_log_dir : None, str
| Path to directory for Tensorboard logging results
use_data_parallel : None, bool
| Whether to use data parallelization
use_attention_pooling : None, bool
| Whether to use attention pooling
use_task_weights : None, bool
| Whether to use task weights
batch_size : None, int
| Batch size to use
n_trials : None, int
| Number of trials for hyperparameter tuning
epochs : None, int
| Number of epochs for training
max_layers_to_freeze : None, dict
| Dictionary with keys "min" and "max" indicating the min and max layers to freeze from fine-tuning (int)
| 0: no layers will be frozen; 2: first two layers will be frozen; etc.
hyperparameters : None, dict
| Dictionary of categorical max and min for each hyperparameter for tuning
| For example:
| {"learning_rate": {"type":"float", "low":"1e-5", "high":"1e-3", "log":True}, "task_weights": {...}, ...}
manual_hyperparameters : None, dict
| Dictionary of manually set value for each hyperparameter
| For example:
| {"learning_rate": 0.001, "task_weights": [1, 1], ...}
use_manual_hyperparameters : None, bool
| Whether to use manually set hyperparameters
use_wandb : None, bool
| Whether to use Weights & Biases for logging
wandb_project : None, str
| Weights & Biases project name
gradient_clipping : None, bool
| Whether to use gradient clipping
max_grad_norm : None, int, float
| Maximum norm for gradient clipping
seed : None, int
| Random seed
"""
self.task_columns = task_columns
self.train_path = train_path
self.val_path = val_path
self.test_path = test_path
self.pretrained_path = pretrained_path
self.model_save_path = model_save_path
self.results_dir = results_dir
self.trials_result_path = trials_result_path
self.batch_size = batch_size
self.n_trials = n_trials
self.study_name = study_name
if max_layers_to_freeze is None:
# Dynamically determine the range of layers to freeze
layer_freeze_range = utils.get_layer_freeze_range(pretrained_path)
self.max_layers_to_freeze = {"min": 1, "max": layer_freeze_range['max']}
else:
self.max_layers_to_freeze = max_layers_to_freeze
self.epochs = epochs
self.tensorboard_log_dir = tensorboard_log_dir
self.use_data_parallel = use_data_parallel
self.use_attention_pooling = use_attention_pooling
self.use_task_weights = use_task_weights
self.hyperparameters = hyperparameters if hyperparameters is not None else {
"learning_rate": {
"type": "float",
"low": 1e-5,
"high": 1e-3,
"log": True
},
"warmup_ratio": {
"type": "float",
"low": 0.005,
"high": 0.01
},
"weight_decay": {
"type": "float",
"low": 0.01,
"high": 0.1
},
"dropout_rate": {
"type": "float",
"low": 0.0,
"high": 0.7
},
"lr_scheduler_type": {
"type": "categorical",
"choices": ["cosine"]
},
"task_weights": {
"type": "float",
"low": 0.1,
"high": 2.0
}
}
self.manual_hyperparameters = manual_hyperparameters if manual_hyperparameters is not None else {
"learning_rate": 0.001,
"warmup_ratio": 0.01,
"weight_decay": 0.1,
"dropout_rate": 0.1,
"lr_scheduler_type": "cosine",
"use_attention_pooling": False,
"task_weights": [1, 1],
"max_layers_to_freeze": 2
}
self.use_manual_hyperparameters = use_manual_hyperparameters
self.use_wandb = use_wandb
self.wandb_project = wandb_project
self.gradient_clipping = gradient_clipping
self.max_grad_norm = max_grad_norm
self.seed = seed
if self.use_manual_hyperparameters:
logger.warning(
"Hyperparameter tuning is highly recommended for optimal results."
)
self.validate_options()
# set up output directories
if self.results_dir is not None:
self.trials_results_path = f"{self.results_dir}/results.txt".replace("//","/")
for output_dir in [self.model_save_path, self.results_dir]:
if not os.path.exists(output_dir):
os.makedirs(output_dir)
self.config = {key: value for key, value in self.__dict__.items() if key in self.valid_option_dict}
def validate_options(self):
# confirm arguments are within valid options and compatible with each other
for attr_name, valid_options in self.valid_option_dict.items():
attr_value = self.__dict__[attr_name]
if not isinstance(attr_value, (list, dict)):
if attr_value in valid_options:
continue
valid_type = False
for option in valid_options:
if (option in [int, float, list, dict, bool, str]) and isinstance(
attr_value, option
):
valid_type = True
break
if valid_type:
continue
logger.error(
f"Invalid option for {attr_name}. "
f"Valid options for {attr_name}: {valid_options}"
)
raise ValueError(f"Invalid option for {attr_name}. Valid options for {attr_name}: {valid_options}")
def run_manual_tuning(self):
"""
Manual hyperparameter tuning and multi-task fine-tuning of pretrained model.
"""
required_variable_names = ["train_path", "val_path", "pretrained_path", "model_save_path", "results_dir"]
required_variables = [self.train_path, self.val_path, self.pretrained_path, self.model_save_path, self.results_dir]
req_var_dict = dict(zip(required_variable_names, required_variables))
self.validate_additional_options(req_var_dict)
if not self.use_manual_hyperparameters:
raise ValueError("Manual hyperparameters are not enabled. Set use_manual_hyperparameters to True.")
# Ensure manual_hyperparameters are set in the config
self.config["manual_hyperparameters"] = self.manual_hyperparameters
self.config["use_manual_hyperparameters"] = True
train_utils.run_manual_tuning(self.config)
def validate_additional_options(self, req_var_dict):
missing_variable = False
for variable_name, variable in req_var_dict.items():
if variable is None:
logger.warning(
f"Please provide value to MTLClassifier for required variable {variable_name}"
)
missing_variable = True
if missing_variable is True:
raise ValueError("Missing required variables for MTLClassifier")
def run_optuna_study(
self,
):
"""
Hyperparameter optimization and/or multi-task fine-tuning of pretrained model.
"""
required_variable_names = ["train_path", "val_path", "pretrained_path", "model_save_path", "results_dir"]
required_variables = [self.train_path, self.val_path, self.pretrained_path, self.model_save_path, self.results_dir]
req_var_dict = dict(zip(required_variable_names, required_variables))
self.validate_additional_options(req_var_dict)
train_utils.run_optuna_study(self.config)
def load_and_evaluate_test_model(
self,
):
"""
Loads previously fine-tuned multi-task model and evaluates on test data.
"""
required_variable_names = ["test_path", "model_save_path", "results_dir"]
required_variables = [self.test_path, self.model_save_path, self.results_dir]
req_var_dict = dict(zip(required_variable_names, required_variables))
self.validate_additional_options(req_var_dict)
eval_utils.load_and_evaluate_test_model(self.config)
def save_model_without_heads(
self,
):
"""
Save previously fine-tuned multi-task model without classification heads.
"""
required_variable_names = ["model_save_path"]
required_variables = [self.model_save_path]
req_var_dict = dict(zip(required_variable_names, required_variables))
self.validate_additional_options(req_var_dict)
utils.save_model_without_heads(os.path.join(self.model_save_path, "GeneformerMultiTask"))
|