Uploaded model

  • Developed by: daidaidaidaidai
  • License: apache-2.0
  • Finetuned from model : llm-jp/llm-jp-3-13b

This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.

sample Use

以下は、elyza-tasks-100-TV_0.jsonlの回答の為のコードです。


from unsloth import FastLanguageModel
from peft import PeftModel
import torch
import json
from tqdm import tqdm
import re

model_id = "daidaidaidaidai/llm-jp-3-13b-it-lora-elyza100_2_merged"
HF_TOKEN = "{YOUR TOKEN}"

dtype = None 
load_in_4bit = True 

model, tokenizer = FastLanguageModel.from_pretrained(
    model_name=model_id,
    dtype=dtype,
    load_in_4bit=load_in_4bit,
    trust_remote_code=True,
)

datasets = []
with open("/content/drive/MyDrive/LLM講座/最終課題/elyza-tasks-100-TV_0.jsonl", "r") as f:
    item = ""
    for line in f:
      line = line.strip()
      item += line
      if item.endswith("}"):
        datasets.append(json.loads(item))
        item = ""

FastLanguageModel.for_inference(model)

results = []
for dt in tqdm(datasets):
  input = dt["input"]

  prompt = f"""### 指示\n{input}\n### 回答\n"""

  inputs = tokenizer([prompt], return_tensors = "pt").to(model.device)

  outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2)
  prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1]

  results.append({"task_id": dt["task_id"], "input": input, "output": prediction})
Downloads last month
20
Safetensors
Model size
7.56B params
Tensor type
F32
·
BF16
·
U8
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for daidaidaidaidai/llm-jp-3-13b-it-lora-elyza100_2_merged

Quantized
(12)
this model