Environmental Impact (CODE CARBON DEFAULT)

Metric Value
Duration (in seconds) 215893.2022356987
Emissions (Co2eq in kg) 0.2259719345261451
CPU power (W) 42.5
GPU power (W) [No GPU]
RAM power (W) 37.5
CPU energy (kWh) 2.548734558446212
GPU energy (kWh) [No GPU]
RAM energy (kWh) 2.248869197867814
Consumed energy (kWh) 4.797603756313989
Country name Switzerland
Cloud provider nan
Cloud region nan
CPU count 4
CPU model Intel(R) Xeon(R) Platinum 8360Y CPU @ 2.40GHz
GPU count nan
GPU model nan

Environmental Impact (for one core)

Metric Value
CPU energy (kWh) 0.41559441430371996
Emissions (Co2eq in kg) 0.08455817087564864

Note

30 April 2024

My Config

Config Value
checkpoint albert-base-v2
model_name BERTrand_bs32_lr5
sequence_length 400
num_epoch 12
learning_rate 5e-05
batch_size 32
weight_decay 0.0
warm_up_prop 0
drop_out_prob 0.1
packing_length 100
train_test_split 0.2
num_steps 6287

Training and Testing steps

Epoch Train Loss Test Loss
0.0 15.495780 13.831327
0.5 7.825472 7.840593
1.0 7.327533 7.785610
1.5 7.205367 7.586150
2.0 7.151769 7.663743
2.5 7.125600 8.101605
3.0 7.034717 7.773854
3.5 7.092155 7.549316
4.0 7.067814 7.819034
4.5 7.141888 7.587213
5.0 7.006890 7.892200
5.5 7.049742 7.752103
6.0 7.048553 7.844037
6.5 7.096755 7.641740
7.0 6.994647 7.617568
7.5 6.993773 7.864096
8.0 7.058714 7.730159
8.5 7.064419 7.629280
9.0 7.013462 7.746540
9.5 6.962919 8.147570
10.0 7.028505 7.587558
10.5 7.022366 7.531848
11.0 7.059191 7.623211
11.5 6.955125 7.734247
12.0 7.028196 7.606153
Downloads last month
3
Safetensors
Model size
11.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.