Environmental Impact (CODE CARBON DEFAULT)
Metric | Value |
---|---|
Duration (in seconds) | 215893.2022356987 |
Emissions (Co2eq in kg) | 0.2259719345261451 |
CPU power (W) | 42.5 |
GPU power (W) | [No GPU] |
RAM power (W) | 37.5 |
CPU energy (kWh) | 2.548734558446212 |
GPU energy (kWh) | [No GPU] |
RAM energy (kWh) | 2.248869197867814 |
Consumed energy (kWh) | 4.797603756313989 |
Country name | Switzerland |
Cloud provider | nan |
Cloud region | nan |
CPU count | 4 |
CPU model | Intel(R) Xeon(R) Platinum 8360Y CPU @ 2.40GHz |
GPU count | nan |
GPU model | nan |
Environmental Impact (for one core)
Metric | Value |
---|---|
CPU energy (kWh) | 0.41559441430371996 |
Emissions (Co2eq in kg) | 0.08455817087564864 |
Note
30 April 2024
My Config
Config | Value |
---|---|
checkpoint | albert-base-v2 |
model_name | BERTrand_bs32_lr5 |
sequence_length | 400 |
num_epoch | 12 |
learning_rate | 5e-05 |
batch_size | 32 |
weight_decay | 0.0 |
warm_up_prop | 0 |
drop_out_prob | 0.1 |
packing_length | 100 |
train_test_split | 0.2 |
num_steps | 6287 |
Training and Testing steps
Epoch | Train Loss | Test Loss |
---|---|---|
0.0 | 15.495780 | 13.831327 |
0.5 | 7.825472 | 7.840593 |
1.0 | 7.327533 | 7.785610 |
1.5 | 7.205367 | 7.586150 |
2.0 | 7.151769 | 7.663743 |
2.5 | 7.125600 | 8.101605 |
3.0 | 7.034717 | 7.773854 |
3.5 | 7.092155 | 7.549316 |
4.0 | 7.067814 | 7.819034 |
4.5 | 7.141888 | 7.587213 |
5.0 | 7.006890 | 7.892200 |
5.5 | 7.049742 | 7.752103 |
6.0 | 7.048553 | 7.844037 |
6.5 | 7.096755 | 7.641740 |
7.0 | 6.994647 | 7.617568 |
7.5 | 6.993773 | 7.864096 |
8.0 | 7.058714 | 7.730159 |
8.5 | 7.064419 | 7.629280 |
9.0 | 7.013462 | 7.746540 |
9.5 | 6.962919 | 8.147570 |
10.0 | 7.028505 | 7.587558 |
10.5 | 7.022366 | 7.531848 |
11.0 | 7.059191 | 7.623211 |
11.5 | 6.955125 | 7.734247 |
12.0 | 7.028196 | 7.606153 |
- Downloads last month
- 3
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.