File size: 13,528 Bytes
60adc6f
 
 
 
 
 
 
 
34e59f1
60adc6f
 
fc74cbd
 
 
 
60adc6f
fc74cbd
 
60adc6f
fc74cbd
60adc6f
fc74cbd
60adc6f
 
 
 
 
 
fc74cbd
 
 
60adc6f
fc74cbd
 
 
 
 
 
 
 
 
 
c927559
fc74cbd
 
c927559
 
fc74cbd
 
 
c927559
fc74cbd
60adc6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc74cbd
60adc6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc74cbd
60adc6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc74cbd
60adc6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc74cbd
60adc6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc74cbd
60adc6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc74cbd
60adc6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bd8b0b
60adc6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bd8b0b
60adc6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc74cbd
60adc6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc74cbd
60adc6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc74cbd
60adc6f
 
 
 
 
 
 
 
 
 
cbd9c2f
60adc6f
 
 
 
 
 
fc74cbd
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
---
datasets:
- danjacobellis/LSDIR_540
- danjacobellis/musdb_segments
---
# Wavelet Learned Lossy Compression

- [Project page and documentation](https://danjacobellis.net/walloc)
- [Paper: "Learned Compression for Compressed Learning"](https://arxiv.org/abs/2412.09405)
- [Additional code accompanying the paper](https://github.com/danjacobellis/lccl)

WaLLoC (Wavelet-Domain Learned Lossy Compression) is an architecture for learned compression that simultaneously satisfies three key
requirements of compressed-domain learning:

1. **Computationally efficient encoding** to reduce overhead in compressed-domain learning and support resource constrained mobile and remote sensors. WaLLoC uses a wavelet packet transform to expose signal redundancies prior to autoencoding. This allows us to replace the encoding DNN with a single linear layer (<100k parameters) without significant loss in quality. WaLLoC incurs <5% of the encoding cost compared to other neural codecs.

2. **High compression ratio** for storage and transmission efficiency. Lossy codecs typically achieve high compression with a combination of quantization and entropy coding. However, naive quantization of autoencoder latents leads to unpredictable and unbounded distortion. Instead, we apply additive noise during training as an
entropy bottleneck, leading to quantization-resiliant latents. When combined with entropy coding, this provides nearly 12× higher compression ratio compared to the VAE used in Stable Diffusion 3, despite offering a higher degree of dimensionality reduction and similar quality.

3. **Dimensionality reduction** to accelerate compressed-domain modeling. WaLLoC’s encoder projects high-dimensional signal patches to low-dimensional latent representations, providing a reduction of up to 20×. This allows WaLLoC to be used as a drop-in replacement for resolution reduction while providing superior detail preservation and downstream accuracy.

WaLLoC does not require perceptual or adversarial losses to represent high-frequency detail, making it compatible with a wide variety of signal types. It currently supports 1D and 2D signals, including mono, stereo, and multi-channel audio and grayscale, RGB, and hyperspectral images.

![](https://danjacobellis.net/walloc/_images/walloc.svg)
WaLLoC’s encode-decode pipeline. The entropy bottleneck and entropy coding steps are only required to achieve high compression ratios for storage and transmission. For compressed-domain learning where dimensionality reduction is the primary goal, these steps can be skipped to reduce overhead and completely eliminate CPU-GPU transfers.



![](https://danjacobellis.net/walloc/_images/radar.svg)
Comparison of WaLLoC with other autoencoder designs for RGB Images and stereo audio.



![](https://danjacobellis.net/walloc/_images/walloc_4x.svg)

![](https://danjacobellis.net/walloc/_images/sd3.svg)

![](https://danjacobellis.net/walloc/_images/walloc_16x.svg)

![](https://danjacobellis.net/walloc/_images/audio_comparison.svg)

```
@inproceedings{jacobellis2024learned,
  title={Learned Compression for Compressed Learning},
  author={Jacobellis, Dan and Yadwadkar, Neeraja J.},
  booktitle={IEEE Data Compression Conference (DCC)},
  note={Preprint}
  year={2024},
  url={http://danjacobellis.net/walloc}
}

```

## Installation

1. Follow the installation instructions for [torch](https://pytorch.org/get-started/locally/)
2. Install WaLLoC and other dependencies via pip

```pip install walloc PyWavelets pytorch-wavelets```

## Image compression


```python
import os
import torch
import json
import matplotlib.pyplot as plt
import numpy as np
from types import SimpleNamespace
from PIL import Image, ImageEnhance
from IPython.display import display
from torchvision.transforms import ToPILImage, PILToTensor
from walloc import walloc
from walloc.walloc import latent_to_pil, pil_to_latent
```

### Load the model from a pre-trained checkpoint

```wget https://hf.co/danjacobellis/walloc/resolve/main/RGB_16x.pth```

```wget https://hf.co/danjacobellis/walloc/resolve/main/RGB_16x.json```


```python
device = "cpu"
codec_config = SimpleNamespace(**json.load(open("RGB_16x.json")))
checkpoint = torch.load("RGB_16x.pth",map_location="cpu",weights_only=False)
codec = walloc.Codec2D(
    channels = codec_config.channels,
    J = codec_config.J,
    Ne = codec_config.Ne,
    Nd = codec_config.Nd,
    latent_dim = codec_config.latent_dim,
    latent_bits = codec_config.latent_bits,
    lightweight_encode = codec_config.lightweight_encode
)
codec.load_state_dict(checkpoint['model_state_dict'])
codec = codec.to(device)
codec.eval();
```

### Load an example image

```wget "https://r0k.us/graphics/kodak/kodak/kodim05.png"```


```python
img = Image.open("kodim05.png")
img
```




    
![png](https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/README_13_0.png)
    



### Full encoding and decoding pipeline with .forward()

* If `codec.eval()` is called, the latent is rounded to nearest integer.

* If `codec.train()` is called, uniform noise is added instead of rounding.


```python
with torch.no_grad():
    codec.eval()
    x = PILToTensor()(img).to(torch.float)
    x = (x/255 - 0.5).unsqueeze(0).to(device)
    x_hat, _, _ = codec(x)
ToPILImage()(x_hat[0]+0.5)
```




    
![png](https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/README_15_0.png)
    



### Accessing latents


```python
with torch.no_grad():
    X = codec.wavelet_analysis(x,J=codec.J)
    z = codec.encoder[0:2](X)
    z_hat = codec.encoder[2](z)
    X_hat = codec.decoder(z_hat)
    x_rec = codec.wavelet_synthesis(X_hat,J=codec.J)
print(f"dimensionality reduction: {x.numel()/z.numel()}×")
```

    dimensionality reduction: 16.0×



```python
plt.figure(figsize=(5,3),dpi=150)
plt.hist(
    z.flatten().numpy(),
    range=(-25,25),
    bins=151,
    density=True,
);
plt.title("Histogram of latents")
plt.xlim([-25,25]);
```


    
![png](https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/README_18_0.png)
    


# Lossless compression of latents


```python
def scale_for_display(img, n_bits):
    scale_factor = (2**8 - 1) / (2**n_bits - 1)
    lut = [int(i * scale_factor) for i in range(2**n_bits)]
    channels = img.split()
    scaled_channels = [ch.point(lut * 2**(8-n_bits)) for ch in channels]
    return Image.merge(img.mode, scaled_channels)
```

### Single channel PNG (L)


```python
z_padded = torch.nn.functional.pad(z_hat, (0, 0, 0, 0, 0, 4))
z_pil = latent_to_pil(z_padded,codec.latent_bits,1)
display(scale_for_display(z_pil[0], codec.latent_bits))
z_pil[0].save('latent.png')
png = [Image.open("latent.png")]
z_rec = pil_to_latent(png,16,codec.latent_bits,1)
assert(z_rec.equal(z_padded))
print("compression_ratio: ", x.numel()/os.path.getsize("latent.png"))
```


    
![png](https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/README_22_0.png)
    


    compression_ratio:  26.729991842653856


### Three channel WebP (RGB)


```python
z_pil = latent_to_pil(z_hat,codec.latent_bits,3)
display(scale_for_display(z_pil[0], codec.latent_bits))
z_pil[0].save('latent.webp',lossless=True)
webp = [Image.open("latent.webp")]
z_rec = pil_to_latent(webp,12,codec.latent_bits,3)
assert(z_rec.equal(z_hat))
print("compression_ratio: ", x.numel()/os.path.getsize("latent.webp"))
```


    
![png](https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/README_24_0.png)
    


    compression_ratio:  28.811254396248536


### Four channel TIF (CMYK)


```python
z_padded = torch.nn.functional.pad(z_hat, (0, 0, 0, 0, 0, 4))
z_pil = latent_to_pil(z_padded,codec.latent_bits,4)
display(scale_for_display(z_pil[0], codec.latent_bits))
z_pil[0].save('latent.tif',compression="tiff_adobe_deflate")
tif = [Image.open("latent.tif")]
z_rec = pil_to_latent(tif,16,codec.latent_bits,4)
assert(z_rec.equal(z_padded))
print("compression_ratio: ", x.numel()/os.path.getsize("latent.tif"))
```


    
![jpeg](README_files/README_26_0.jpg)
    


    compression_ratio:  21.04034530731638


# Audio Compression


```python
import io
import os
import torch
import torchaudio
import json
import matplotlib.pyplot as plt
from types import SimpleNamespace
from PIL import Image
from datasets import load_dataset
from einops import rearrange
from IPython.display import Audio
from walloc import walloc
```

### Load the model from a pre-trained checkpoint

```wget https://hf.co/danjacobellis/walloc/resolve/main/stereo_5x.pth```

```wget https://hf.co/danjacobellis/walloc/resolve/main/stereo_5x.json```


```python
codec_config = SimpleNamespace(**json.load(open("stereo_5x.json")))
checkpoint = torch.load("stereo_5x.pth",map_location="cpu",weights_only=False)
codec = walloc.Codec1D(
    channels = codec_config.channels,
    J = codec_config.J,
    Ne = codec_config.Ne,
    Nd = codec_config.Nd,
    latent_dim = codec_config.latent_dim,
    latent_bits = codec_config.latent_bits,
    lightweight_encode = codec_config.lightweight_encode,
    post_filter = codec_config.post_filter
)
codec.load_state_dict(checkpoint['model_state_dict'])
codec.eval();
```

    /home/dan/g/lib/python3.12/site-packages/torch/nn/utils/weight_norm.py:143: FutureWarning: `torch.nn.utils.weight_norm` is deprecated in favor of `torch.nn.utils.parametrizations.weight_norm`.
      WeightNorm.apply(module, name, dim)


### Load example audio track


```python
MUSDB = load_dataset("danjacobellis/musdb_segments_val",split='validation')
audio_buff = io.BytesIO(MUSDB[40]['audio_mix']['bytes'])
x, fs = torchaudio.load(audio_buff,normalize=False)
x = x.to(torch.float)
x = x - x.mean()
max_abs = x.abs().max()
x = x / (max_abs + 1e-8)
x = x/2
```


```python
Audio(x[:,:2**20],rate=44100)
```

<audio controls>
  <source src="https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/README_0.wav" type="audio/wav">
</audio>

### Full encoding and decoding pipeline with .forward()

* If `codec.eval()` is called, the latent is rounded to nearest integer.

* If `codec.train()` is called, uniform noise is added instead of rounding.


```python
with torch.no_grad():
    codec.eval()
    x_hat, _, _ = codec(x.unsqueeze(0))
```


```python
Audio(x_hat[0,:,:2**20],rate=44100)
```

<audio controls>
  <source src="https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/README_1.wav" type="audio/wav">
</audio>

### Accessing latents


```python
with torch.no_grad():
    X = codec.wavelet_analysis(x.unsqueeze(0),J=codec.J)
    z = codec.encoder[0:2](X)
    z_hat = codec.encoder[2](z)
    X_hat = codec.decoder(z_hat)
    x_rec = codec.wavelet_synthesis(X_hat,J=codec.J)
print(f"dimensionality reduction: {x.numel()/z.numel():.4g}×")
```

    dimensionality reduction: 4.74×



```python
plt.figure(figsize=(5,3),dpi=150)
plt.hist(
    z.flatten().numpy(),
    range=(-25,25),
    bins=151,
    density=True,
);
plt.title("Histogram of latents")
plt.xlim([-25,25]);
```


    
![png](https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/README_41_0.png)
    


# Lossless compression of latents


```python
def pad(audio, p=2**16):
    B,C,L = audio.shape
    padding_size = (p - (L % p)) % p
    if padding_size > 0:
        audio = torch.nn.functional.pad(audio, (0, padding_size), mode='constant', value=0)
    return audio
with torch.no_grad():
    L = x.shape[-1]
    x_padded = pad(x.unsqueeze(0), 2**16)
    X = codec.wavelet_analysis(x_padded,codec.J)
    z = codec.encoder(X)
    ℓ = z.shape[-1]
    z = pad(z,128)
    z = rearrange(z, 'b c (w h) -> b c w h', h=128).to("cpu")
    webp = walloc.latent_to_pil(z,codec.latent_bits,3)[0]
    buff = io.BytesIO()
    webp.save(buff, format='WEBP', lossless=True)
    webp_bytes = buff.getbuffer()
```


```python
print("compression_ratio: ", x.numel()/len(webp_bytes))
webp
```

    compression_ratio:  9.83650170496386





    
![png](https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/README_44_1.png)
    



# Decoding


```python
with torch.no_grad():
    z_hat = walloc.pil_to_latent(
        [Image.open(buff)],
        codec.latent_dim,
        codec.latent_bits,
        3)
    X_hat = codec.decoder(rearrange(z_hat, 'b c h w -> b c (h w)')[:,:,:ℓ])
    x_hat = codec.wavelet_synthesis(X_hat,codec.J)
    x_hat = codec.post(x_hat)
    x_hat = codec.clamp(x_hat[0,:,:L])
```


```python
start, end = 0, 1000
plt.figure(figsize=(8, 3), dpi=180)
plt.plot(x[0, start:end], alpha=0.5, c='b', label='Ch.1 (Uncompressed)')
plt.plot(x_hat[0, start:end], alpha=0.5, c='g', label='Ch.1 (WaLLoC)')
plt.plot(x[1, start:end], alpha=0.5, c='r', label='Ch.2 (Uncompressed)')
plt.plot(x_hat[1, start:end], alpha=0.5, c='purple', label='Ch.2 (WaLLoC)')

plt.xlim([400,1000])
plt.ylim([-0.6,0.3])
plt.legend(loc='lower center')
plt.box(False)
plt.xticks([])
plt.yticks([]);
```


    
![png](https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/README_47_0.png)
    



```python
!jupyter nbconvert --to markdown README.ipynb
```

    [NbConvertApp] Converting notebook README.ipynb to markdown
    [NbConvertApp] Support files will be in README_files/
    [NbConvertApp] Writing 12900 bytes to README.md



```python
!sed -i 's|!\[png](README_files/\(README_[0-9]*_[0-9]*\.png\))|![png](https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/\1)|g' README.md
```


```python
!sed -i 's|src="README_files/\(README_[0-9]*\.wav\)"|src="https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/\1"|g' README.md
```