daochf's picture
Update README.md
ce923aa verified
---
library_name: peft
base_model: meta-llama/Llama-2-13b-chat-hf
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
```text
{
"alpha_pattern": {},
"auto_mapping": null,
"base_model_name_or_path": "meta-llama/Llama-2-13b-chat-hf",
"bias": "none",
"fan_in_fan_out": false,
"inference_mode": true,
"init_lora_weights": true,
"layers_pattern": null,
"layers_to_transform": null,
"lora_alpha": 16,
"lora_dropout": 0.05,
"modules_to_save": null,
"peft_type": "LORA",
"r": 8,
"rank_pattern": {},
"revision": null,
"target_modules": [
"q_proj",
"v_proj"
],
"task_type": "CAUSAL_LM"
}
```
```text
{
"best_metric": 0.05725787207484245,
"best_model_checkpoint": "./Lora-Meta-Llama2-13b-chat-hf-QandA_2g_v01-v07\\checkpoint-80440",
"epoch": 40.0,
"eval_steps": 500,
"global_step": 80440,
"is_hyper_param_search": false,
"is_local_process_zero": true,
"is_world_process_zero": true,
"log_history": [
{
"epoch": 1.0,
"learning_rate": 4.875e-05,
"loss": 0.7946,
"step": 2011
},
{
"epoch": 1.0,
"eval_loss": 0.6483868360519409,
"eval_runtime": 69.9926,
"eval_samples_per_second": 5.758,
"eval_steps_per_second": 0.729,
"step": 2011
},
{
"epoch": 2.0,
"learning_rate": 4.75e-05,
"loss": 0.5829,
"step": 4022
},
{
"epoch": 2.0,
"eval_loss": 0.5402843356132507,
"eval_runtime": 70.0086,
"eval_samples_per_second": 5.756,
"eval_steps_per_second": 0.728,
"step": 4022
},
{
"epoch": 3.0,
"learning_rate": 4.6250000000000006e-05,
"loss": 0.4918,
"step": 6033
},
{
"epoch": 3.0,
"eval_loss": 0.45011985301971436,
"eval_runtime": 70.1392,
"eval_samples_per_second": 5.746,
"eval_steps_per_second": 0.727,
"step": 6033
},
{
"epoch": 4.0,
"learning_rate": 4.5e-05,
"loss": 0.419,
"step": 8044
},
{
"epoch": 4.0,
"eval_loss": 0.38660600781440735,
"eval_runtime": 70.1321,
"eval_samples_per_second": 5.746,
"eval_steps_per_second": 0.727,
"step": 8044
},
{
"epoch": 5.0,
"learning_rate": 4.375e-05,
"loss": 0.3644,
"step": 10055
},
{
"epoch": 5.0,
"eval_loss": 0.33983489871025085,
"eval_runtime": 69.9916,
"eval_samples_per_second": 5.758,
"eval_steps_per_second": 0.729,
"step": 10055
},
{
"epoch": 6.0,
"learning_rate": 4.25e-05,
"loss": 0.3211,
"step": 12066
},
{
"epoch": 6.0,
"eval_loss": 0.3004438281059265,
"eval_runtime": 70.0768,
"eval_samples_per_second": 5.751,
"eval_steps_per_second": 0.728,
"step": 12066
},
{
"epoch": 7.0,
"learning_rate": 4.125e-05,
"loss": 0.2854,
"step": 14077
},
{
"epoch": 7.0,
"eval_loss": 0.2634061574935913,
"eval_runtime": 70.2069,
"eval_samples_per_second": 5.74,
"eval_steps_per_second": 0.726,
"step": 14077
},
{
"epoch": 8.0,
"learning_rate": 4e-05,
"loss": 0.255,
"step": 16088
},
{
"epoch": 8.0,
"eval_loss": 0.23876915872097015,
"eval_runtime": 70.1721,
"eval_samples_per_second": 5.743,
"eval_steps_per_second": 0.727,
"step": 16088
},
{
"epoch": 9.0,
"learning_rate": 3.875e-05,
"loss": 0.2281,
"step": 18099
},
{
"epoch": 9.0,
"eval_loss": 0.21539266407489777,
"eval_runtime": 70.1355,
"eval_samples_per_second": 5.746,
"eval_steps_per_second": 0.727,
"step": 18099
},
{
"epoch": 10.0,
"learning_rate": 3.7500000000000003e-05,
"loss": 0.2052,
"step": 20110
},
{
"epoch": 10.0,
"eval_loss": 0.18904653191566467,
"eval_runtime": 70.1349,
"eval_samples_per_second": 5.746,
"eval_steps_per_second": 0.727,
"step": 20110
},
{
"epoch": 11.0,
"learning_rate": 3.625e-05,
"loss": 0.1853,
"step": 22121
},
{
"epoch": 11.0,
"eval_loss": 0.17202098667621613,
"eval_runtime": 69.9829,
"eval_samples_per_second": 5.759,
"eval_steps_per_second": 0.729,
"step": 22121
},
{
"epoch": 12.0,
"learning_rate": 3.5e-05,
"loss": 0.1673,
"step": 24132
},
{
"epoch": 12.0,
"eval_loss": 0.15875761210918427,
"eval_runtime": 70.1596,
"eval_samples_per_second": 5.744,
"eval_steps_per_second": 0.727,
"step": 24132
},
{
"epoch": 13.0,
"learning_rate": 3.375000000000001e-05,
"loss": 0.1526,
"step": 26143
},
{
"epoch": 13.0,
"eval_loss": 0.14447805285453796,
"eval_runtime": 70.1252,
"eval_samples_per_second": 5.747,
"eval_steps_per_second": 0.727,
"step": 26143
},
{
"epoch": 14.0,
"learning_rate": 3.2500000000000004e-05,
"loss": 0.1398,
"step": 28154
},
{
"epoch": 14.0,
"eval_loss": 0.13342420756816864,
"eval_runtime": 70.1196,
"eval_samples_per_second": 5.747,
"eval_steps_per_second": 0.727,
"step": 28154
},
{
"epoch": 15.0,
"learning_rate": 3.125e-05,
"loss": 0.1285,
"step": 30165
},
{
"epoch": 15.0,
"eval_loss": 0.12114470452070236,
"eval_runtime": 70.2112,
"eval_samples_per_second": 5.74,
"eval_steps_per_second": 0.726,
"step": 30165
},
{
"epoch": 16.0,
"learning_rate": 3e-05,
"loss": 0.1187,
"step": 32176
},
{
"epoch": 16.0,
"eval_loss": 0.11447372287511826,
"eval_runtime": 70.1257,
"eval_samples_per_second": 5.747,
"eval_steps_per_second": 0.727,
"step": 32176
},
{
"epoch": 17.0,
"learning_rate": 2.8749999999999997e-05,
"loss": 0.1104,
"step": 34187
},
{
"epoch": 17.0,
"eval_loss": 0.10539893060922623,
"eval_runtime": 70.1826,
"eval_samples_per_second": 5.742,
"eval_steps_per_second": 0.727,
"step": 34187
},
{
"epoch": 18.0,
"learning_rate": 2.7500000000000004e-05,
"loss": 0.1038,
"step": 36198
},
{
"epoch": 18.0,
"eval_loss": 0.09906744956970215,
"eval_runtime": 70.117,
"eval_samples_per_second": 5.748,
"eval_steps_per_second": 0.727,
"step": 36198
},
{
"epoch": 19.0,
"learning_rate": 2.625e-05,
"loss": 0.0974,
"step": 38209
},
{
"epoch": 19.0,
"eval_loss": 0.09452048689126968,
"eval_runtime": 70.1925,
"eval_samples_per_second": 5.741,
"eval_steps_per_second": 0.727,
"step": 38209
},
{
"epoch": 20.0,
"learning_rate": 2.5e-05,
"loss": 0.0927,
"step": 40220
},
{
"epoch": 20.0,
"eval_loss": 0.09014962613582611,
"eval_runtime": 69.9849,
"eval_samples_per_second": 5.758,
"eval_steps_per_second": 0.729,
"step": 40220
},
{
"epoch": 21.0,
"learning_rate": 2.375e-05,
"loss": 0.0878,
"step": 42231
},
{
"epoch": 21.0,
"eval_loss": 0.08503083884716034,
"eval_runtime": 70.1728,
"eval_samples_per_second": 5.743,
"eval_steps_per_second": 0.727,
"step": 42231
},
{
"epoch": 22.0,
"learning_rate": 2.25e-05,
"loss": 0.0838,
"step": 44242
},
{
"epoch": 22.0,
"eval_loss": 0.0820975974202156,
"eval_runtime": 70.0791,
"eval_samples_per_second": 5.751,
"eval_steps_per_second": 0.728,
"step": 44242
},
{
"epoch": 23.0,
"learning_rate": 2.125e-05,
"loss": 0.0801,
"step": 46253
},
{
"epoch": 23.0,
"eval_loss": 0.0777197927236557,
"eval_runtime": 69.9961,
"eval_samples_per_second": 5.757,
"eval_steps_per_second": 0.729,
"step": 46253
},
{
"epoch": 24.0,
"learning_rate": 2e-05,
"loss": 0.0775,
"step": 48264
},
{
"epoch": 24.0,
"eval_loss": 0.0748789981007576,
"eval_runtime": 69.905,
"eval_samples_per_second": 5.765,
"eval_steps_per_second": 0.73,
"step": 48264
},
{
"epoch": 25.0,
"learning_rate": 1.8750000000000002e-05,
"loss": 0.0751,
"step": 50275
},
{
"epoch": 25.0,
"eval_loss": 0.0729849636554718,
"eval_runtime": 70.0915,
"eval_samples_per_second": 5.75,
"eval_steps_per_second": 0.728,
"step": 50275
},
{
"epoch": 26.0,
"learning_rate": 1.75e-05,
"loss": 0.0727,
"step": 52286
},
{
"epoch": 26.0,
"eval_loss": 0.0698952004313469,
"eval_runtime": 70.0781,
"eval_samples_per_second": 5.751,
"eval_steps_per_second": 0.728,
"step": 52286
},
{
"epoch": 27.0,
"learning_rate": 1.6250000000000002e-05,
"loss": 0.0706,
"step": 54297
},
{
"epoch": 27.0,
"eval_loss": 0.06760543584823608,
"eval_runtime": 69.9618,
"eval_samples_per_second": 5.76,
"eval_steps_per_second": 0.729,
"step": 54297
},
{
"epoch": 28.0,
"learning_rate": 1.5e-05,
"loss": 0.0691,
"step": 56308
},
{
"epoch": 28.0,
"eval_loss": 0.06610006093978882,
"eval_runtime": 70.1085,
"eval_samples_per_second": 5.748,
"eval_steps_per_second": 0.727,
"step": 56308
},
{
"epoch": 29.0,
"learning_rate": 1.3750000000000002e-05,
"loss": 0.0678,
"step": 58319
},
{
"epoch": 29.0,
"eval_loss": 0.06433883309364319,
"eval_runtime": 70.1363,
"eval_samples_per_second": 5.746,
"eval_steps_per_second": 0.727,
"step": 58319
},
{
"epoch": 30.0,
"learning_rate": 1.25e-05,
"loss": 0.0666,
"step": 60330
},
{
"epoch": 30.0,
"eval_loss": 0.06277326494455338,
"eval_runtime": 70.0925,
"eval_samples_per_second": 5.75,
"eval_steps_per_second": 0.728,
"step": 60330
},
{
"epoch": 31.0,
"learning_rate": 1.125e-05,
"loss": 0.0652,
"step": 62341
},
{
"epoch": 31.0,
"eval_loss": 0.06192418932914734,
"eval_runtime": 69.9357,
"eval_samples_per_second": 5.762,
"eval_steps_per_second": 0.729,
"step": 62341
},
{
"epoch": 32.0,
"learning_rate": 1e-05,
"loss": 0.0644,
"step": 64352
},
{
"epoch": 32.0,
"eval_loss": 0.0610126368701458,
"eval_runtime": 70.061,
"eval_samples_per_second": 5.752,
"eval_steps_per_second": 0.728,
"step": 64352
},
{
"epoch": 33.0,
"learning_rate": 8.75e-06,
"loss": 0.0635,
"step": 66363
},
{
"epoch": 33.0,
"eval_loss": 0.060028236359357834,
"eval_runtime": 69.9253,
"eval_samples_per_second": 5.763,
"eval_steps_per_second": 0.729,
"step": 66363
},
{
"epoch": 34.0,
"learning_rate": 7.5e-06,
"loss": 0.0629,
"step": 68374
},
{
"epoch": 34.0,
"eval_loss": 0.05925382673740387,
"eval_runtime": 69.9042,
"eval_samples_per_second": 5.765,
"eval_steps_per_second": 0.73,
"step": 68374
},
{
"epoch": 35.0,
"learning_rate": 6.25e-06,
"loss": 0.0622,
"step": 70385
},
{
"epoch": 35.0,
"eval_loss": 0.05860263481736183,
"eval_runtime": 69.8706,
"eval_samples_per_second": 5.768,
"eval_steps_per_second": 0.73,
"step": 70385
},
{
"epoch": 36.0,
"learning_rate": 5e-06,
"loss": 0.0616,
"step": 72396
},
{
"epoch": 36.0,
"eval_loss": 0.05808304622769356,
"eval_runtime": 69.9999,
"eval_samples_per_second": 5.757,
"eval_steps_per_second": 0.729,
"step": 72396
},
{
"epoch": 37.0,
"learning_rate": 3.75e-06,
"loss": 0.061,
"step": 74407
},
{
"epoch": 37.0,
"eval_loss": 0.057825859636068344,
"eval_runtime": 69.9835,
"eval_samples_per_second": 5.758,
"eval_steps_per_second": 0.729,
"step": 74407
},
{
"epoch": 38.0,
"learning_rate": 2.5e-06,
"loss": 0.0605,
"step": 76418
},
{
"epoch": 38.0,
"eval_loss": 0.057523321360349655,
"eval_runtime": 69.9943,
"eval_samples_per_second": 5.758,
"eval_steps_per_second": 0.729,
"step": 76418
},
{
"epoch": 39.0,
"learning_rate": 1.25e-06,
"loss": 0.06,
"step": 78429
},
{
"epoch": 39.0,
"eval_loss": 0.05731285735964775,
"eval_runtime": 70.0036,
"eval_samples_per_second": 5.757,
"eval_steps_per_second": 0.729,
"step": 78429
},
{
"epoch": 40.0,
"learning_rate": 0.0,
"loss": 0.0595,
"step": 80440
},
{
"epoch": 40.0,
"eval_loss": 0.05725787207484245,
"eval_runtime": 69.9176,
"eval_samples_per_second": 5.764,
"eval_steps_per_second": 0.729,
"step": 80440
}
],
"logging_steps": 500,
"max_steps": 80440,
"num_train_epochs": 40,
"save_steps": 500,
"total_flos": 9.118285061492736e+17,
"trial_name": null,
"trial_params": null
}
```
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.6.2