BGE large Legal Spanish

This is a sentence-transformers model finetuned from BAAI/bge-m3. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-m3
  • Maximum Sequence Length: 8192 tokens
  • Output Dimensionality: 1024 tokens
  • Similarity Function: Cosine Similarity
  • Language: es
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("dariolopez/bge-m3-es-legal-tmp-2")
# Run inference
sentences = [
    'Artículo 6. Definiciones. 1. Discriminación directa e indirecta. b) La discriminación indirecta se produce cuando una disposición, criterio o práctica aparentemente neutros ocasiona o puede ocasionar a una o varias personas una desventaja particular con respecto a otras por razón de las causas previstas en el apartado 1 del artículo 2.',
    '¿Qué se considera discriminación indirecta?',
    '¿Qué tipo de información se considera veraz?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.5427
cosine_accuracy@3 0.7988
cosine_accuracy@5 0.8384
cosine_accuracy@10 0.8872
cosine_precision@1 0.5427
cosine_precision@3 0.2663
cosine_precision@5 0.1677
cosine_precision@10 0.0887
cosine_recall@1 0.5427
cosine_recall@3 0.7988
cosine_recall@5 0.8384
cosine_recall@10 0.8872
cosine_ndcg@10 0.7233
cosine_mrr@10 0.6696
cosine_map@100 0.6746

Information Retrieval

Metric Value
cosine_accuracy@1 0.5396
cosine_accuracy@3 0.8049
cosine_accuracy@5 0.8445
cosine_accuracy@10 0.8902
cosine_precision@1 0.5396
cosine_precision@3 0.2683
cosine_precision@5 0.1689
cosine_precision@10 0.089
cosine_recall@1 0.5396
cosine_recall@3 0.8049
cosine_recall@5 0.8445
cosine_recall@10 0.8902
cosine_ndcg@10 0.7246
cosine_mrr@10 0.6702
cosine_map@100 0.6749

Information Retrieval

Metric Value
cosine_accuracy@1 0.5488
cosine_accuracy@3 0.8018
cosine_accuracy@5 0.8354
cosine_accuracy@10 0.8933
cosine_precision@1 0.5488
cosine_precision@3 0.2673
cosine_precision@5 0.1671
cosine_precision@10 0.0893
cosine_recall@1 0.5488
cosine_recall@3 0.8018
cosine_recall@5 0.8354
cosine_recall@10 0.8933
cosine_ndcg@10 0.7304
cosine_mrr@10 0.6771
cosine_map@100 0.6811

Information Retrieval

Metric Value
cosine_accuracy@1 0.5457
cosine_accuracy@3 0.7774
cosine_accuracy@5 0.8293
cosine_accuracy@10 0.872
cosine_precision@1 0.5457
cosine_precision@3 0.2591
cosine_precision@5 0.1659
cosine_precision@10 0.0872
cosine_recall@1 0.5457
cosine_recall@3 0.7774
cosine_recall@5 0.8293
cosine_recall@10 0.872
cosine_ndcg@10 0.7183
cosine_mrr@10 0.6678
cosine_map@100 0.6733

Information Retrieval

Metric Value
cosine_accuracy@1 0.5335
cosine_accuracy@3 0.7622
cosine_accuracy@5 0.814
cosine_accuracy@10 0.8659
cosine_precision@1 0.5335
cosine_precision@3 0.2541
cosine_precision@5 0.1628
cosine_precision@10 0.0866
cosine_recall@1 0.5335
cosine_recall@3 0.7622
cosine_recall@5 0.814
cosine_recall@10 0.8659
cosine_ndcg@10 0.708
cosine_mrr@10 0.6563
cosine_map@100 0.6617

Information Retrieval

Metric Value
cosine_accuracy@1 0.5122
cosine_accuracy@3 0.7317
cosine_accuracy@5 0.7896
cosine_accuracy@10 0.8659
cosine_precision@1 0.5122
cosine_precision@3 0.2439
cosine_precision@5 0.1579
cosine_precision@10 0.0866
cosine_recall@1 0.5122
cosine_recall@3 0.7317
cosine_recall@5 0.7896
cosine_recall@10 0.8659
cosine_ndcg@10 0.6908
cosine_mrr@10 0.6347
cosine_map@100 0.6394

Training Details

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 16
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • tf32: True
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 16
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: True
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss loss dim_1024_cosine_map@100 dim_128_cosine_map@100 dim_256_cosine_map@100 dim_512_cosine_map@100 dim_64_cosine_map@100 dim_768_cosine_map@100
0.8649 10 1.4359 - - - - - - -
0.9514 11 - 0.6685 0.6708 0.6300 0.6676 0.6716 0.5560 0.6781
1.7297 20 0.7913 - - - - - - -
1.9892 23 - 0.4458 0.6734 0.6533 0.6773 0.6770 0.6174 0.6657
2.5946 30 0.3416 - - - - - - -
2.9405 34 - 0.4239 0.6749 0.6591 0.6725 0.6752 0.6188 0.6784
3.4595 40 0.1327 - - - - - - -
3.9784 46 - 0.3934 0.6820 0.6594 0.6862 0.6856 0.6293 0.6777
4.3243 50 0.0563 - - - - - - -
4.9297 57 - 0.3690 0.6747 0.6582 0.6760 0.6852 0.6375 0.6774
5.1892 60 0.0324 - - - - - - -
5.9676 69 - 0.362 0.6752 0.6643 0.6784 0.6809 0.6312 0.6799
6.0541 70 0.0205 - - - - - - -
6.9189 80 0.0136 0.3608 0.6780 0.6582 0.6769 0.6785 0.6366 0.6769
7.7838 90 0.0102 - - - - - - -
7.9568 92 - 0.3307 0.6804 0.6511 0.6774 0.6823 0.6355 0.6747
8.6486 100 0.0076 - - - - - - -
8.9946 104 - 0.3387 0.6778 0.6518 0.6751 0.6787 0.6313 0.6693
9.5135 110 0.0069 - - - - - - -
9.9459 115 - 0.3222 0.6776 0.6571 0.6745 0.6810 0.6397 0.6722
10.3784 120 0.0055 - - - - - - -
10.9838 127 - 0.3325 0.6760 0.6595 0.6714 0.6807 0.6399 0.6729
11.2432 130 0.0055 - - - - - - -
11.9351 138 - 0.3366 0.6770 0.6598 0.6730 0.6813 0.6360 0.6733
12.1081 140 0.0049 - - - - - - -
12.9730 150 0.0045 0.3263 0.6759 0.6599 0.6743 0.6816 0.6394 0.6759
13.8378 160 0.0044 - - - - - - -
13.9243 161 - 0.3231 0.6747 0.6593 0.6729 0.6804 0.6407 0.6746
14.7027 170 0.0045 - - - - - - -
14.9622 173 - 0.3238 0.6743 0.6597 0.6720 0.6828 0.6395 0.6759
15.2216 176 - 0.3244 0.6746 0.6617 0.6733 0.6811 0.6394 0.6749
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.0.1
  • Transformers: 4.42.3
  • PyTorch: 2.2.0+cu121
  • Accelerate: 0.32.1
  • Datasets: 2.20.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
22
Safetensors
Model size
568M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for dariolopez/bge-m3-es-legal-tmp-2

Base model

BAAI/bge-m3
Finetuned
(185)
this model

Evaluation results