metadata
base_model: Daemontatox/RA_Reasoner2.0
license: apache-2.0
datasets:
- Daemontatox/Deepthinking-COT
language:
- en
new_version: Daemontatox/RA_Reasoner2.0
library_name: transformers
tags:
- COT
- Reasoning
- text-generation-inference
- llama-cpp
- gguf-my-repo
pipeline_tag: text-generation
model-index:
- name: RA_Reasoner2.0
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: wis-k/instruction-following-eval
split: train
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 53.66
name: averaged accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FRA_Reasoner2.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: SaylorTwift/bbh
split: test
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 43.07
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FRA_Reasoner2.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: lighteval/MATH-Hard
split: test
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 22.89
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FRA_Reasoner2.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
split: train
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 9.96
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FRA_Reasoner2.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 7.18
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FRA_Reasoner2.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 37.26
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FRA_Reasoner2.0
name: Open LLM Leaderboard
darkc0de/RA_Reasoner2.0-Q5_K_S-GGUF
This model was converted to GGUF format from Daemontatox/RA_Reasoner2.0
using llama.cpp via the ggml.ai's GGUF-my-repo space.
Refer to the original model card for more details on the model.
Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
brew install llama.cpp
Invoke the llama.cpp server or the CLI.
CLI:
llama-cli --hf-repo darkc0de/RA_Reasoner2.0-Q5_K_S-GGUF --hf-file ra_reasoner2.0-q5_k_s.gguf -p "The meaning to life and the universe is"
Server:
llama-server --hf-repo darkc0de/RA_Reasoner2.0-Q5_K_S-GGUF --hf-file ra_reasoner2.0-q5_k_s.gguf -c 2048
Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
git clone https://github.com/ggerganov/llama.cpp
Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1
flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
cd llama.cpp && LLAMA_CURL=1 make
Step 3: Run inference through the main binary.
./llama-cli --hf-repo darkc0de/RA_Reasoner2.0-Q5_K_S-GGUF --hf-file ra_reasoner2.0-q5_k_s.gguf -p "The meaning to life and the universe is"
or
./llama-server --hf-repo darkc0de/RA_Reasoner2.0-Q5_K_S-GGUF --hf-file ra_reasoner2.0-q5_k_s.gguf -c 2048