darkc0de's picture
Upload README.md with huggingface_hub
cc93bb2 verified
metadata
base_model: Daemontatox/RA_Reasoner2.0
license: apache-2.0
datasets:
  - Daemontatox/Deepthinking-COT
language:
  - en
new_version: Daemontatox/RA_Reasoner2.0
library_name: transformers
tags:
  - COT
  - Reasoning
  - text-generation-inference
  - llama-cpp
  - gguf-my-repo
pipeline_tag: text-generation
model-index:
  - name: RA_Reasoner2.0
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: wis-k/instruction-following-eval
          split: train
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 53.66
            name: averaged accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FRA_Reasoner2.0
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: SaylorTwift/bbh
          split: test
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 43.07
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FRA_Reasoner2.0
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: lighteval/MATH-Hard
          split: test
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 22.89
            name: exact match
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FRA_Reasoner2.0
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          split: train
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 9.96
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FRA_Reasoner2.0
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 7.18
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FRA_Reasoner2.0
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 37.26
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FRA_Reasoner2.0
          name: Open LLM Leaderboard

darkc0de/RA_Reasoner2.0-Q5_K_S-GGUF

This model was converted to GGUF format from Daemontatox/RA_Reasoner2.0 using llama.cpp via the ggml.ai's GGUF-my-repo space. Refer to the original model card for more details on the model.

Use with llama.cpp

Install llama.cpp through brew (works on Mac and Linux)

brew install llama.cpp

Invoke the llama.cpp server or the CLI.

CLI:

llama-cli --hf-repo darkc0de/RA_Reasoner2.0-Q5_K_S-GGUF --hf-file ra_reasoner2.0-q5_k_s.gguf -p "The meaning to life and the universe is"

Server:

llama-server --hf-repo darkc0de/RA_Reasoner2.0-Q5_K_S-GGUF --hf-file ra_reasoner2.0-q5_k_s.gguf -c 2048

Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.

git clone https://github.com/ggerganov/llama.cpp

Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1 flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).

cd llama.cpp && LLAMA_CURL=1 make

Step 3: Run inference through the main binary.

./llama-cli --hf-repo darkc0de/RA_Reasoner2.0-Q5_K_S-GGUF --hf-file ra_reasoner2.0-q5_k_s.gguf -p "The meaning to life and the universe is"

or

./llama-server --hf-repo darkc0de/RA_Reasoner2.0-Q5_K_S-GGUF --hf-file ra_reasoner2.0-q5_k_s.gguf -c 2048