Multi-Opthalingua / LLMs_Language_bias-main /src /.ipynb_checkpoints /Agent_Language_Evaluation-checkpoint.py
AAAIBenchmark's picture
Upload 96 files
10bf19f verified
""" Evaluate Medical Tests Classification in LLMS """
## Setup
#### Load the API key and libaries.
import json
import pandas as pd
import os
import openai
from dotenv import load_dotenv, find_dotenv
import argparse
import re
import subprocess
from langchain.prompts import PromptTemplate
from langchain.chat_models import ChatOpenAI
from langchain.llms import OpenAI
from langchain.llms import LlamaCpp
from langchain.agents import initialize_agent, Tool
from langchain.tools import tool
from langchain.agents import AgentType
from langchain.agents.react.base import DocstoreExplorer
#from langchain_community.tools.pubmed.tool import PubmedQueryRun
from langchain.retrievers import PubMedRetriever
from langchain.utilities import WikipediaAPIWrapper
from langchain.tools import DuckDuckGoSearchRun
#from langchain.globals import set_verbose
#set_verbose(True)
from langchain.output_parsers import ResponseSchema
from langchain.output_parsers import StructuredOutputParser
from langchain.output_parsers import OutputFixingParser
from langchain.chains import LLMChain
### Download LLAMA model:
def download_and_rename(url, filename):
"""Downloads a file from the given URL and renames it to the given new file name.
Args:
url: The URL of the file to download.
new_file_name: The new file name for the downloaded file.
"""
os.makedirs(os.path.dirname(filename), exist_ok=True)
print(f'Downloading the weights of the model: {url} ...')
subprocess.run(["wget", "-q", "-O", filename, url])
print(f'Done!')
def download_hugging_face_model(model_version='Llama-2-7b'):
if model_version not in ['Llama-2-7b', 'Llama-2-13b', 'Llama-2-70b', 'Mistral-7b']:
raise ValueError("Options for Llama model should be 7b, 13b or 70b, or Mistral-7b")
MODEL_URL = {
'Llama-2-7b': 'https://huggingface.co/TheBloke/Llama-2-7b-Chat-GGUF/resolve/main/llama-2-7b-chat.Q8_0.gguf',
'Llama-2-13b': 'https://huggingface.co/TheBloke/Llama-2-13B-chat-GGUF/resolve/main/llama-2-13b-chat.Q8_0.gguf',
'Llama-2-70b': 'https://huggingface.co/TheBloke/Llama-2-70B-chat-GGUF/resolve/main/llama-2-70b-chat.Q5_0.gguf',
'Mistral-7b': 'https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF/resolve/main/mistral-7b-instruct-v0.1.Q8_0.gguf'
}
MODEL_URL = MODEL_URL[model_version]
model_path = f'Models/{model_version}.gguf'
if os.path.exists(model_path):
confirmation = input(f"The model file '{model_path}' already exists. Do you want to overwrite it? (yes/no): ").strip().lower()
if confirmation != 'yes':
print("Model installation aborted.")
return model_path
download_and_rename(MODEL_URL, model_path)
return model_path
# Function to validate JSON format
def is_valid_json(text):
try:
json.loads(text)
return True
except:
return False
def get_completion_from_messages(messages,
model):
#try:
response = model(messages)['output']
print('response')
print(response)
if is_valid_json(response):
response = json.loads(response)
print('Loaded JSON response:')
print(response)
return response
else:
if '"response": "a"' in response.lower() or '"response":"a"' in response.lower() or ': "a"' in response.lower() or ':"a"' in response.lower() or '"response": a' in response.lower() or '"response":a' in response.lower() or ': a' in response.lower() or ':a' in response.lower() or "'response': 'a'" in response.lower() or "'response':'a'" in response.lower() or ": 'a'" in response.lower() or ":'a'" in response.lower() or "'response': a" in response.lower() or "'response':a" in response.lower():
response = {'response': 'a'}
elif '"response": "b"' in response.lower() or '"response":"b"' in response.lower() or ': "b"' in response.lower() or ':"b"' in response.lower() or '"response": b' in response.lower() or '"response":b' in response.lower() or ': b' in response.lower() or ':b' in response.lower() or "'response': 'b'" in response.lower() or "'response':'b'" in response.lower() or ": 'b'" in response.lower() or ":'b'" in response.lower() or "'response': b" in response.lower() or "'response':b" in response.lower():
response = {'response': 'b'}
elif '"response": "c"' in response.lower() or '"response":"c"' in response.lower() or ': "c"' in response.lower() or ':"c"' in response.lower() or '"response": c' in response.lower() or '"response":c' in response.lower() or ': c' in response.lower() or ':c' in response.lower() or "'response': 'c'" in response.lower() or "'response':'c'" in response.lower() or ": 'c'" in response.lower() or ":'c'" in response.lower() or "'response': c" in response.lower() or "'response':c" in response.lower():
response = {'response': 'c'}
elif '"response": "d"' in response.lower() or '"response":"d"' in response.lower() or ': "d"' in response.lower() or ':"d"' in response.lower() or '"response": d' in response.lower() or '"response":d' in response.lower() or ': d' in response.lower() or ':d' in response.lower() or "'response': 'd'" in response.lower() or "'response':'d'" in response.lower() or ": 'd'" in response.lower() or ":'d'" in response.lower() or "'response': d" in response.lower() or "'response':d" in response.lower():
response = {'response': 'd'}
return response
def llm_language_evaluation(path='data/Portuguese.csv', model='gpt-3.5-turbo', temperature=0.0, n_repetitions=1, reasoning=False, languages=['english', 'portuguese'], llm_chain=False):
# Load API key if GPT, or Model if LLAMA
if 'gpt' in model:
_ = load_dotenv(find_dotenv()) # read local .env file
openai.api_key = os.environ['OPENAI_API_KEY']
llm = OpenAI(temperature=temperature, model_name=model)
elif 'Llama-2' in model or ('Mistral-7b' in model):
model_path = download_hugging_face_model(model_version=model)
llm = LlamaCpp(
model_path=model_path,
temperature=temperature,
n_ctx=2048,
verbose=False, # VERBOSE
)
else:
print('Model should be a GPT, Llama-2, or Mistral-7b model')
return 0
#### Load the Constants
PATH = path # 'data/Portuguese.csv'
MODEL = model # "gpt-3.5-turbo"
TEMPERATURE = temperature # 0.0
N_REPETITIONS = n_repetitions # 1
REASONING = reasoning # False
LANGUAGES = languages # ['english', 'portuguese']
##### RAG:
pubmed = PubMedRetriever()
wikipedia = WikipediaAPIWrapper()
search = DuckDuckGoSearchRun()
@tool
def json_format(response: str) -> dict:
"""Given the correct response's letter a, b, c or d; generates the output json. If input is not a, b, c or d, returns an error message."""
if response in ['a', 'b', 'c', 'd']:
return {"response": response}
else:
return "Error: response should be a, b, c or d."
##### Tools:
tools = [
Tool(
name = "Pubmed search",
func=pubmed.run,
description="useful for when you need to search for a medical topic, treatment or outcome on pubmed"
),
Tool(
name = "JSON format",
func=json_format,
description="Given the correct response's letter a, b, c or d; generates the output json. If input is not a, b, c or d, returns an error message."
),
#Tool(
# name='Wikipedia',
# func= wikipedia.run,
# description="Useful for when you need to look up an specific topic, object, or procedure on wikipedia"
#),
Tool(
name='DuckDuckGo Search',
func= search.run,
description="Useful for when you need to do a search on the internet to find information that another tool can't find. be specific with your input."
)
]
##### Agent:
react_agent = initialize_agent(tools, llm, agent="zero-shot-react-description", verbose=True, handle_parsing_errors="Check your output and make sure it is a JSON file with the key response and value a letter a, b, c, or d. Make sure you can parse that using Python", max_iterations=10)#AgentType.REACT_DOCSTORE, verbose=True)
#Wikipedia: Useful for when you need to look up an specific topic, object, or procedure on wikipedia
#Wikipedia
prompt = '''
Answer the following questions as best you can. You have access to the following tools:
Pubmed search: useful for when you need to search for a medical topic, treatment or outcome on pubmed
JSON format: Given the correct response's letter a, b, c or d; generates the output json. If input is not a, b, c or d, returns an error message.
DuckDuckGo Search: Useful for when you need to do a search on the internet to find information that another tool can't find. be specific with your input.
Use the following format:
Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be one of [Pubmed search, JSON format, DuckDuckGo Search]. Don't use the same tool more than 3 times.
Action Input: the input to the action
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can repeat 4 times maximum, then you should answer the question. Don't iterate more than 4 times. Just provide a response to the question after that in the expected format.)
Thought: I now know the final answer, or I reached the limit of iterations. I will provide the final answer now.
Final Answer: the final answer to the original input question. The final answer should be a JSON object with the key "response" and the value being the letter a, b, c or d with the correct answer.
Begin!
Question: {input}
Thought:{agent_scratchpad}
'''
react_agent.agent.llm_chain.prompt.template = prompt
##### Experiments:
if N_REPETITIONS <= 0 or (N_REPETITIONS != int(N_REPETITIONS)):
print(f'N_REPETITIONS should be a positive integer, not {N_REPETITIONS}')
print('N_REPETITIONS will be set to 1')
N_REPETITIONS = 1
### Questions from a csv file:
df = pd.read_csv(PATH)
### Evaluate the model in question answering per language:
responses = {}
reasoning = {}
for language in LANGUAGES:
responses[language] = [[] for n in range(N_REPETITIONS)]
if REASONING:
reasoning[language] = [[] for n in range(N_REPETITIONS)]
for row in range(df.shape[0]):
print('*'*50)
print(f'Question {row+1}: ')
for language in LANGUAGES:
print(f'Language: {language}')
question = df[language][row]
print('Question: ')
print(question)
for n in range(N_REPETITIONS):
print(f'Test #{n}: ')
response = get_completion_from_messages(question, react_agent)
print(type(response))
print(response)
# Append to the list:
responses[language][n].append(response['response'])
if REASONING:
reasoning[language][n].append(response['reasoning'])
print('*'*50)
### Save the results in a csv file:
for language in LANGUAGES:
if N_REPETITIONS == 1:
df[f'responses_{language}'] = responses[language][0]
if REASONING:
df[f'reasoning_{language}'] = reasoning[language][0]
for n in range(N_REPETITIONS):
df[f'responses_{language}_{n}'] = responses[language][n]
if REASONING:
df[f'reasoning_{language}_{n}'] = reasoning[language][n]
if not os.path.exists('responses'):
os.makedirs('responses')
if N_REPETITIONS == 1:
df.to_csv(f"responses/rag_{MODEL}_Temperature{str(TEMPERATURE).replace('.', '_')}.csv", index=False)
else:
df.to_csv(f"responses/rag_{MODEL}_Temperature{str(TEMPERATURE).replace('.', '_')}_{N_REPETITIONS}Repetitions.csv", index=False)
def main():
# Add argparse code to handle command-line arguments
parser = argparse.ArgumentParser(description="Evaluate Medical Tests Classification in LLMS")
parser.add_argument("--csv_file", default="data/Portuguese.csv", help="Path to the CSV file with the questions")
parser.add_argument("--model", default="gpt-3.5-turbo", help="LLM to use e.g: gpt-3.5-turbo, gpt-4, Llama-2-7b, Llama-2-13b, or Llama-2-70b")
parser.add_argument("--temperature", type=float, default=0.0, help="Temperature parameter of the model between 0 and 1. Used to modifiy the model's creativity. 0 is deterministic and 1 is the most creative")
parser.add_argument("--n_repetitions", type=int, default=1, help="Number of repetitions to run each experiment. Used to measure the model's hallucinations")
parser.add_argument("--reasoning", action="store_true", default=False, help="Enable reasoning mode. If set to True, the model will be asked to provide a reasoning for its answer. If set to True the model uses more tokens")
parser.add_argument("--languages", nargs='+', default=['english', 'portuguese'], help="List of languages")
parser.add_argument("--llm_chain", action="store_true", default=False, help="Enable the use of ")
args = parser.parse_args()
PATH = args.csv_file
MODEL = args.model
TEMPERATURE = args.temperature
N_REPETITIONS = args.n_repetitions
REASONING = args.reasoning
LANGUAGES = args.languages
llm_chain = args.llm_chain
llm_language_evaluation(path=PATH, model=MODEL, temperature=TEMPERATURE, n_repetitions=N_REPETITIONS, reasoning=REASONING, languages=LANGUAGES, llm_chain=llm_chain)
if __name__ == "__main__":
main()