File size: 4,940 Bytes
c174f79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
868fdaa
3a77c97
c174f79
 
 
 
 
 
 
 
 
 
80b8f8f
c174f79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80b8f8f
 
 
c174f79
80b8f8f
9d8cb08
c174f79
 
 
 
 
 
80b8f8f
c174f79
80b8f8f
 
 
c174f79
 
 
 
 
 
 
 
 
 
 
 
 
 
ba7b8ac
c174f79
 
 
 
 
 
 
 
 
 
 
 
 
80b8f8f
c174f79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
daae59b
c174f79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba7b8ac
c174f79
 
dc0e5e7
23ab82c
 
 
17d6cad
0c3aeea
e6109e1
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
 # 
 # This file is part of the SMVB distribution (https://huggingface.co/datasets/ABC-iRobotics/SMVB).
 # Copyright (c) 2023 ABC-iRobotics.
 # 
 # This program is free software: you can redistribute it and/or modify  
 # it under the terms of the GNU General Public License as published by  
 # the Free Software Foundation, version 3.
 #
 # This program is distributed in the hope that it will be useful, but 
 # WITHOUT ANY WARRANTY; without even the implied warranty of 
 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 
 # General Public License for more details.
 #
 # You should have received a copy of the GNU General Public License 
 # along with this program. If not, see <http://www.gnu.org/licenses/>.
 #
"""SMVB dataset"""

import sys
import io
import numpy as np
if sys.version_info < (3, 9):
    from typing import Sequence, Generator, Tuple
else:
    from collections.abc import Sequence, Generator
    Tuple = tuple

from typing import Optional, IO

import datasets
import itertools
from huggingface_hub import HfFileSystem


# ---- Constants ----

_CITATION = """\
@INPROCEEDINGS{karoly2024synthetic,
  author={Károly, Artúr I. and Nádas, Imre and Galambos, Péter},
  booktitle={2024 IEEE 22nd World Symposium on Applied Machine Intelligence and Informatics (SAMI)}, 
  title={Synthetic Multimodal Video Benchmark (SMVB): Utilizing Blender for rich dataset generation}, 
  year={2024},
  volume={},
  number={},
  pages={},
  doi={}}

"""

_DESCRIPTION = """\
Amultimodal video benchmark for evaluating models in multi-task learning scenarios.
"""

_HOMEPAGE = "https://huggingface.co/ABC-iRobotics/SMVB"

_LICENSE = "GNU General Public License v3.0"

_BASE_URL = "https://huggingface.co/"
_REPO = "datasets/ABC-iRobotics/SMVB"
_RESOURCE = "/resolve/main"

_VERSION = "1.0.0"


# ---- SMVB dataset Configs ----

class SMVBDatasetConfig(datasets.BuilderConfig):
    """BuilderConfig for SMVB dataset."""

    def __init__(self, name: str,  version: Optional[str] = None, **kwargs):
        super(SMVBDatasetConfig, self).__init__(version=datasets.Version(version), name=name, **kwargs)
        fs = HfFileSystem()
        tarfiles = sorted(fs.glob(_REPO + "/**.tar.gz"))
        self._data_urls = [p.replace(_REPO,_BASE_URL+_REPO+_RESOURCE) for p in tarfiles]

    @property
    def features(self):
        return datasets.Features(
            {
                "image": datasets.Image(),
                "mask": datasets.Image(),
                "depth": datasets.Sequence(datasets.Value("float32")),
                "flow": datasets.Sequence(datasets.Value("float32")),
                "normal": datasets.Sequence(datasets.Value("float32"))
            }
        )
    
    @property
    def keys(self):
        return ("image", "mask", "depth", "flow", "normal")



# ---- SMVB dataset Loader ----

class SMVBDataset(datasets.GeneratorBasedBuilder):
    """SMVB dataset."""

    BUILDER_CONFIG_CLASS = SMVBDatasetConfig
    BUILDER_CONFIGS = [
        SMVBDatasetConfig(
            name = "all",
            description = "Synthetic data with rich annotations",
            version = _VERSION
            ),
    ]
    DEFAULT_WRITER_BATCH_SIZE = 10

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=self.config.features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
            version=self.config.version,
        )

    def _split_generators(self, dl_manager):
        local_data_paths = dl_manager.download(self.config._data_urls)
        local_data_gen = itertools.chain.from_iterable([dl_manager.iter_archive(path) for path in local_data_paths])
        
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "data": local_data_gen
                }
            )
        ]

    def _generate_examples(
        self,
        data: Generator[Tuple[str,IO], None, None]
    ):
        file_infos = []
        keys = self.config.keys

        for i, info in enumerate(data):
            file_path, file_object = info
            if i%len(keys) < 2:
                file_infos.append((file_path, file_object.read()))
            else:
                # file_infos.append((file_path, np.load(io.BytesIO(file_object.read())).flatten()))
                file_infos.append((file_path, np.load(io.BytesIO(file_object.read())).flatten() if i%len(keys) == 3 else [0]))
            if (i+1)%len(keys) == 0:
                img_features_dict = {k:{'path':d[0],'bytes':d[1]} for k,d in zip(keys,file_infos) if k in ['image','mask']}
                array_features_dict = {k:d[1] for k,d in zip(keys,file_infos) if not k in ['image','mask']}
                data_dict = {**img_features_dict, **array_features_dict}
                yield (i//len(keys))-1, data_dict
                file_infos = []