SMVB / SMVB.py
karolyartur's picture
Update SMVB.py
0c3aeea
#
# This file is part of the SMVB distribution (https://huggingface.co/datasets/ABC-iRobotics/SMVB).
# Copyright (c) 2023 ABC-iRobotics.
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, version 3.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
"""SMVB dataset"""
import sys
import io
import numpy as np
if sys.version_info < (3, 9):
from typing import Sequence, Generator, Tuple
else:
from collections.abc import Sequence, Generator
Tuple = tuple
from typing import Optional, IO
import datasets
import itertools
from huggingface_hub import HfFileSystem
# ---- Constants ----
_CITATION = """\
@INPROCEEDINGS{karoly2024synthetic,
author={Károly, Artúr I. and Nádas, Imre and Galambos, Péter},
booktitle={2024 IEEE 22nd World Symposium on Applied Machine Intelligence and Informatics (SAMI)},
title={Synthetic Multimodal Video Benchmark (SMVB): Utilizing Blender for rich dataset generation},
year={2024},
volume={},
number={},
pages={},
doi={}}
"""
_DESCRIPTION = """\
Amultimodal video benchmark for evaluating models in multi-task learning scenarios.
"""
_HOMEPAGE = "https://huggingface.co/ABC-iRobotics/SMVB"
_LICENSE = "GNU General Public License v3.0"
_BASE_URL = "https://huggingface.co/"
_REPO = "datasets/ABC-iRobotics/SMVB"
_RESOURCE = "/resolve/main"
_VERSION = "1.0.0"
# ---- SMVB dataset Configs ----
class SMVBDatasetConfig(datasets.BuilderConfig):
"""BuilderConfig for SMVB dataset."""
def __init__(self, name: str, version: Optional[str] = None, **kwargs):
super(SMVBDatasetConfig, self).__init__(version=datasets.Version(version), name=name, **kwargs)
fs = HfFileSystem()
tarfiles = sorted(fs.glob(_REPO + "/**.tar.gz"))
self._data_urls = [p.replace(_REPO,_BASE_URL+_REPO+_RESOURCE) for p in tarfiles]
@property
def features(self):
return datasets.Features(
{
"image": datasets.Image(),
"mask": datasets.Image(),
"depth": datasets.Sequence(datasets.Value("float32")),
"flow": datasets.Sequence(datasets.Value("float32")),
"normal": datasets.Sequence(datasets.Value("float32"))
}
)
@property
def keys(self):
return ("image", "mask", "depth", "flow", "normal")
# ---- SMVB dataset Loader ----
class SMVBDataset(datasets.GeneratorBasedBuilder):
"""SMVB dataset."""
BUILDER_CONFIG_CLASS = SMVBDatasetConfig
BUILDER_CONFIGS = [
SMVBDatasetConfig(
name = "all",
description = "Synthetic data with rich annotations",
version = _VERSION
),
]
DEFAULT_WRITER_BATCH_SIZE = 10
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=self.config.features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
version=self.config.version,
)
def _split_generators(self, dl_manager):
local_data_paths = dl_manager.download(self.config._data_urls)
local_data_gen = itertools.chain.from_iterable([dl_manager.iter_archive(path) for path in local_data_paths])
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"data": local_data_gen
}
)
]
def _generate_examples(
self,
data: Generator[Tuple[str,IO], None, None]
):
file_infos = []
keys = self.config.keys
for i, info in enumerate(data):
file_path, file_object = info
if i%len(keys) < 2:
file_infos.append((file_path, file_object.read()))
else:
# file_infos.append((file_path, np.load(io.BytesIO(file_object.read())).flatten()))
file_infos.append((file_path, np.load(io.BytesIO(file_object.read())).flatten() if i%len(keys) == 3 else [0]))
if (i+1)%len(keys) == 0:
img_features_dict = {k:{'path':d[0],'bytes':d[1]} for k,d in zip(keys,file_infos) if k in ['image','mask']}
array_features_dict = {k:d[1] for k,d in zip(keys,file_infos) if not k in ['image','mask']}
data_dict = {**img_features_dict, **array_features_dict}
yield (i//len(keys))-1, data_dict
file_infos = []