|
--- |
|
license: mit |
|
tags: |
|
- video |
|
- driving |
|
- Bengaluru |
|
- disparity maps |
|
- depth dataset |
|
homepage: https://adityang.github.io/AdityaNG/BengaluruDrivingDataset/ |
|
--- |
|
|
|
# Bengaluru Semantic Occupancy Dataset |
|
|
|
<img src="https://adityang.github.io/AdityaNG/BengaluruDrivingDataset/index_files/BDD_Iterator_Demo-2023-08-30_08.25.17.gif" > |
|
|
|
## Dataset Summary |
|
|
|
We gathered a dataset spanning 114 minutes and 165K frames in Bengaluru, India. Our dataset consists of video data from a calibrated camera sensor with a resolution of 1920×1080 recorded at a framerate of 30 Hz. We utilize a Depth Dataset Generation pipeline that only uses videos as input to produce high-resolution disparity maps. |
|
|
|
- Dataset Iterator: https://github.com/AdityaNG/bdd_dataset_iterator |
|
- Project Page: https://adityang.github.io/AdityaNG/BengaluruDrivingDataset/ |
|
- Dataset Download: https://huggingface.co/datasets/AdityaNG/BengaluruSemanticOccupancyDataset |
|
|
|
## Paper |
|
|
|
[Bengaluru Driving Dataset: 3D Occupancy Convolutional Transformer Network in Unstructured Traffic Scenarios](https://arxiv.org/abs/2307.10934) |
|
|
|
## Citation |
|
|
|
```bibtex |
|
@misc{analgund2023octran, |
|
title={Bengaluru Driving Dataset: 3D Occupancy Convolutional Transformer Network in Unstructured Traffic Scenarios}, |
|
author={Ganesh, Aditya N and Pobbathi Badrinath, Dhruval and |
|
Kumar, Harshith Mohan and S, Priya and Narayan, Surabhi |
|
}, |
|
year={2023}, |
|
howpublished={Spotlight Presentation at the Transformers for Vision Workshop, CVPR}, |
|
url={https://sites.google.com/view/t4v-cvpr23/papers#h.enx3bt45p649}, |
|
note={Transformers for Vision Workshop, CVPR 2023} |
|
} |