url
stringlengths
61
61
repository_url
stringclasses
1 value
labels_url
stringlengths
75
75
comments_url
stringlengths
70
70
events_url
stringlengths
68
68
html_url
stringlengths
49
51
id
int64
1.14B
1.87B
node_id
stringlengths
18
19
number
int64
3.74k
6.19k
title
stringlengths
1
290
user
dict
labels
list
state
stringclasses
2 values
locked
bool
1 class
assignee
dict
assignees
list
milestone
dict
comments
sequence
created_at
timestamp[s]
updated_at
timestamp[s]
closed_at
timestamp[s]
author_association
stringclasses
3 values
active_lock_reason
null
body
stringlengths
2
33.9k
reactions
dict
timeline_url
stringlengths
70
70
performed_via_github_app
null
state_reason
stringclasses
3 values
draft
bool
2 classes
pull_request
dict
is_pull_request
bool
2 classes
https://api.github.com/repos/huggingface/datasets/issues/6193
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6193/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6193/comments
https://api.github.com/repos/huggingface/datasets/issues/6193/events
https://github.com/huggingface/datasets/issues/6193
1,872,285,153
I_kwDODunzps5vmM3h
6,193
Dataset loading script method does not work with .pyc file
{ "login": "riteshkumarumassedu", "id": 43389071, "node_id": "MDQ6VXNlcjQzMzg5MDcx", "avatar_url": "https://avatars.githubusercontent.com/u/43389071?v=4", "gravatar_id": "", "url": "https://api.github.com/users/riteshkumarumassedu", "html_url": "https://github.com/riteshkumarumassedu", "followers_url": "https://api.github.com/users/riteshkumarumassedu/followers", "following_url": "https://api.github.com/users/riteshkumarumassedu/following{/other_user}", "gists_url": "https://api.github.com/users/riteshkumarumassedu/gists{/gist_id}", "starred_url": "https://api.github.com/users/riteshkumarumassedu/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/riteshkumarumassedu/subscriptions", "organizations_url": "https://api.github.com/users/riteshkumarumassedu/orgs", "repos_url": "https://api.github.com/users/riteshkumarumassedu/repos", "events_url": "https://api.github.com/users/riteshkumarumassedu/events{/privacy}", "received_events_url": "https://api.github.com/users/riteshkumarumassedu/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[]
2023-08-29T19:35:06
2023-08-29T19:35:06
null
NONE
null
### Describe the bug The huggingface dataset library specifically looks for ‘.py’ file while loading the dataset using loading script approach and it does not work with ‘.pyc’ file. While deploying in production, it becomes an issue when we are restricted to use only .pyc files. Is there any work around for this ? ### Steps to reproduce the bug 1. Create a dataset loading script to read the custom data. 2. compile the code to make sure that .pyc file is created 3. Delete the loading script and re-run the code. Usually, python should make use of complied .pyc files. However, in this case, the dataset library errors out with the message that it's unable to find the data loader loading script. ### Expected behavior The code should make use of .pyc file and run without any error. ### Environment info NA
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6193/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6193/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6192
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6192/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6192/comments
https://api.github.com/repos/huggingface/datasets/issues/6192/events
https://github.com/huggingface/datasets/pull/6192
1,871,911,640
PR_kwDODunzps5ZDGnI
6,192
Set minimal fsspec version requirement to 2023.1.0
{ "login": "mariosasko", "id": 47462742, "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "gravatar_id": "", "url": "https://api.github.com/users/mariosasko", "html_url": "https://github.com/mariosasko", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "repos_url": "https://api.github.com/users/mariosasko/repos", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005972 / 0.011353 (-0.005381) | 0.003636 / 0.011008 (-0.007372) | 0.080254 / 0.038508 (0.041746) | 0.059564 / 0.023109 (0.036455) | 0.310615 / 0.275898 (0.034717) | 0.359307 / 0.323480 (0.035827) | 0.003408 / 0.007986 (-0.004578) | 0.002941 / 0.004328 (-0.001388) | 0.063699 / 0.004250 (0.059449) | 0.046072 / 0.037052 (0.009020) | 0.318670 / 0.258489 (0.060181) | 0.369677 / 0.293841 (0.075836) | 0.026995 / 0.128546 (-0.101552) | 0.007954 / 0.075646 (-0.067693) | 0.261667 / 0.419271 (-0.157604) | 0.045167 / 0.043533 (0.001634) | 0.314276 / 0.255139 (0.059137) | 0.348871 / 0.283200 (0.065672) | 0.021748 / 0.141683 (-0.119935) | 1.438598 / 1.452155 (-0.013557) | 1.530119 / 1.492716 (0.037403) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.196894 / 0.018006 (0.178888) | 0.445757 / 0.000490 (0.445267) | 0.002842 / 0.000200 (0.002642) | 0.000069 / 0.000054 (0.000015) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024923 / 0.037411 (-0.012488) | 0.075186 / 0.014526 (0.060661) | 0.087193 / 0.176557 (-0.089364) | 0.147496 / 0.737135 (-0.589639) | 0.087083 / 0.296338 (-0.209255) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.423545 / 0.215209 (0.208336) | 4.187927 / 2.077655 (2.110273) | 2.008656 / 1.504120 (0.504536) | 1.791313 / 1.541195 (0.250119) | 1.849836 / 1.468490 (0.381346) | 0.499458 / 4.584777 (-4.085318) | 2.983206 / 3.745712 (-0.762506) | 2.801005 / 5.269862 (-2.468856) | 1.886207 / 4.565676 (-2.679469) | 0.057343 / 0.424275 (-0.366932) | 0.006666 / 0.007607 (-0.000941) | 0.483948 / 0.226044 (0.257904) | 4.874818 / 2.268929 (2.605890) | 2.439393 / 55.444624 (-53.005231) | 2.049861 / 6.876477 (-4.826616) | 2.217050 / 2.142072 (0.074977) | 0.589760 / 4.805227 (-4.215467) | 0.125298 / 6.500664 (-6.375366) | 0.061123 / 0.075469 (-0.014347) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.234721 / 1.841788 (-0.607067) | 18.193756 / 8.074308 (10.119448) | 13.682835 / 10.191392 (3.491443) | 0.129345 / 0.680424 (-0.551078) | 0.016589 / 0.534201 (-0.517612) | 0.332355 / 0.579283 (-0.246928) | 0.358408 / 0.434364 (-0.075955) | 0.382044 / 0.540337 (-0.158293) | 0.535403 / 1.386936 (-0.851533) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006193 / 0.011353 (-0.005160) | 0.003674 / 0.011008 (-0.007335) | 0.062481 / 0.038508 (0.023973) | 0.062096 / 0.023109 (0.038987) | 0.449592 / 0.275898 (0.173694) | 0.479245 / 0.323480 (0.155765) | 0.004793 / 0.007986 (-0.003193) | 0.002896 / 0.004328 (-0.001433) | 0.062887 / 0.004250 (0.058636) | 0.050049 / 0.037052 (0.012997) | 0.454940 / 0.258489 (0.196451) | 0.486115 / 0.293841 (0.192274) | 0.028585 / 0.128546 (-0.099961) | 0.007954 / 0.075646 (-0.067692) | 0.067744 / 0.419271 (-0.351528) | 0.040473 / 0.043533 (-0.003060) | 0.448408 / 0.255139 (0.193269) | 0.472423 / 0.283200 (0.189223) | 0.020549 / 0.141683 (-0.121133) | 1.563618 / 1.452155 (0.111463) | 1.520149 / 1.492716 (0.027432) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.226604 / 0.018006 (0.208598) | 0.417615 / 0.000490 (0.417126) | 0.003386 / 0.000200 (0.003186) | 0.000074 / 0.000054 (0.000019) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027264 / 0.037411 (-0.010147) | 0.081709 / 0.014526 (0.067184) | 0.091793 / 0.176557 (-0.084763) | 0.145559 / 0.737135 (-0.591576) | 0.091869 / 0.296338 (-0.204469) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.462917 / 0.215209 (0.247708) | 4.629512 / 2.077655 (2.551857) | 2.555715 / 1.504120 (1.051595) | 2.388064 / 1.541195 (0.846870) | 2.458320 / 1.468490 (0.989830) | 0.511615 / 4.584777 (-4.073162) | 3.124566 / 3.745712 (-0.621146) | 2.839190 / 5.269862 (-2.430672) | 1.894551 / 4.565676 (-2.671126) | 0.059565 / 0.424275 (-0.364710) | 0.006481 / 0.007607 (-0.001126) | 0.532023 / 0.226044 (0.305979) | 5.361507 / 2.268929 (3.092579) | 2.982594 / 55.444624 (-52.462031) | 2.644870 / 6.876477 (-4.231606) | 2.831476 / 2.142072 (0.689404) | 0.607381 / 4.805227 (-4.197846) | 0.126067 / 6.500664 (-6.374597) | 0.062130 / 0.075469 (-0.013339) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.350442 / 1.841788 (-0.491345) | 18.829553 / 8.074308 (10.755245) | 14.796701 / 10.191392 (4.605309) | 0.145393 / 0.680424 (-0.535031) | 0.018218 / 0.534201 (-0.515983) | 0.335500 / 0.579283 (-0.243783) | 0.359190 / 0.434364 (-0.075174) | 0.388377 / 0.540337 (-0.151960) | 0.534994 / 1.386936 (-0.851942) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#ff7629eb72f499d841d64aa03f97e0b1707d1cc7 \"CML watermark\")\n", "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6192). All of your documentation changes will be reflected on that endpoint." ]
2023-08-29T15:23:41
2023-08-29T15:31:58
null
CONTRIBUTOR
null
Fix https://github.com/huggingface/datasets/issues/6141 Colab installs 2023.6.0, so we should be good 🙂
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6192/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6192/timeline
null
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6192", "html_url": "https://github.com/huggingface/datasets/pull/6192", "diff_url": "https://github.com/huggingface/datasets/pull/6192.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6192.patch", "merged_at": null }
true
https://api.github.com/repos/huggingface/datasets/issues/6191
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6191/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6191/comments
https://api.github.com/repos/huggingface/datasets/issues/6191/events
https://github.com/huggingface/datasets/pull/6191
1,871,634,840
PR_kwDODunzps5ZCKmv
6,191
Add missing `revision` argument
{ "login": "qgallouedec", "id": 45557362, "node_id": "MDQ6VXNlcjQ1NTU3MzYy", "avatar_url": "https://avatars.githubusercontent.com/u/45557362?v=4", "gravatar_id": "", "url": "https://api.github.com/users/qgallouedec", "html_url": "https://github.com/qgallouedec", "followers_url": "https://api.github.com/users/qgallouedec/followers", "following_url": "https://api.github.com/users/qgallouedec/following{/other_user}", "gists_url": "https://api.github.com/users/qgallouedec/gists{/gist_id}", "starred_url": "https://api.github.com/users/qgallouedec/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/qgallouedec/subscriptions", "organizations_url": "https://api.github.com/users/qgallouedec/orgs", "repos_url": "https://api.github.com/users/qgallouedec/repos", "events_url": "https://api.github.com/users/qgallouedec/events{/privacy}", "received_events_url": "https://api.github.com/users/qgallouedec/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6191). All of your documentation changes will be reflected on that endpoint." ]
2023-08-29T13:05:04
2023-08-29T13:30:30
null
CONTRIBUTOR
null
I've noticed that when you're not working on the main branch, there are sometimes errors in the files returned. After some investigation, I realized that the revision was not properly passed everywhere. This PR proposes a fix.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6191/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6191/timeline
null
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6191", "html_url": "https://github.com/huggingface/datasets/pull/6191", "diff_url": "https://github.com/huggingface/datasets/pull/6191.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6191.patch", "merged_at": null }
true
https://api.github.com/repos/huggingface/datasets/issues/6190
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6190/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6190/comments
https://api.github.com/repos/huggingface/datasets/issues/6190/events
https://github.com/huggingface/datasets/issues/6190
1,871,582,175
I_kwDODunzps5vjhPf
6,190
`Invalid user token` even when correct user token is passed!
{ "login": "Vaibhavs10", "id": 18682411, "node_id": "MDQ6VXNlcjE4NjgyNDEx", "avatar_url": "https://avatars.githubusercontent.com/u/18682411?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Vaibhavs10", "html_url": "https://github.com/Vaibhavs10", "followers_url": "https://api.github.com/users/Vaibhavs10/followers", "following_url": "https://api.github.com/users/Vaibhavs10/following{/other_user}", "gists_url": "https://api.github.com/users/Vaibhavs10/gists{/gist_id}", "starred_url": "https://api.github.com/users/Vaibhavs10/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Vaibhavs10/subscriptions", "organizations_url": "https://api.github.com/users/Vaibhavs10/orgs", "repos_url": "https://api.github.com/users/Vaibhavs10/repos", "events_url": "https://api.github.com/users/Vaibhavs10/events{/privacy}", "received_events_url": "https://api.github.com/users/Vaibhavs10/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "This is because `download_config.use_auth_token` is deprecated - you should use `download_config.token` instead", "Works! Thanks for the quick fix! <3" ]
2023-08-29T12:37:03
2023-08-29T13:01:10
2023-08-29T13:01:09
MEMBER
null
### Describe the bug I'm working on a dataset which comprises other datasets on the hub. URL: https://huggingface.co/datasets/open-asr-leaderboard/datasets-test-only Note: Some of the sub-datasets in this metadataset require explicit access. All the other datasets work fine, except, `common_voice`. ### Steps to reproduce the bug https://github.com/Vaibhavs10/scratchpad/blob/main/cv_datasets_bug_repro.ipynb ### Expected behavior It should work if the provided access token is valid (as it does for all the other datasets) ### Environment info datasets version -> 2.14.4
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6190/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6190/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6189
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6189/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6189/comments
https://api.github.com/repos/huggingface/datasets/issues/6189/events
https://github.com/huggingface/datasets/pull/6189
1,871,569,855
PR_kwDODunzps5ZB8Z9
6,189
Don't alter input in Features.from_dict
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006166 / 0.011353 (-0.005187) | 0.003643 / 0.011008 (-0.007365) | 0.080966 / 0.038508 (0.042458) | 0.060538 / 0.023109 (0.037429) | 0.309205 / 0.275898 (0.033307) | 0.351007 / 0.323480 (0.027527) | 0.003592 / 0.007986 (-0.004393) | 0.002880 / 0.004328 (-0.001448) | 0.062957 / 0.004250 (0.058707) | 0.049015 / 0.037052 (0.011963) | 0.309436 / 0.258489 (0.050947) | 0.362695 / 0.293841 (0.068854) | 0.027818 / 0.128546 (-0.100728) | 0.008030 / 0.075646 (-0.067616) | 0.262678 / 0.419271 (-0.156594) | 0.046024 / 0.043533 (0.002491) | 0.316246 / 0.255139 (0.061107) | 0.337454 / 0.283200 (0.054254) | 0.022529 / 0.141683 (-0.119154) | 1.432492 / 1.452155 (-0.019662) | 1.499646 / 1.492716 (0.006929) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.190931 / 0.018006 (0.172925) | 0.428053 / 0.000490 (0.427564) | 0.002839 / 0.000200 (0.002639) | 0.000069 / 0.000054 (0.000014) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024042 / 0.037411 (-0.013370) | 0.073952 / 0.014526 (0.059426) | 0.905973 / 0.176557 (0.729417) | 0.177767 / 0.737135 (-0.559368) | 0.125779 / 0.296338 (-0.170559) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.398997 / 0.215209 (0.183788) | 3.959575 / 2.077655 (1.881920) | 1.907038 / 1.504120 (0.402918) | 1.732908 / 1.541195 (0.191713) | 1.757038 / 1.468490 (0.288548) | 0.495917 / 4.584777 (-4.088860) | 3.021437 / 3.745712 (-0.724275) | 2.793960 / 5.269862 (-2.475901) | 1.827753 / 4.565676 (-2.737923) | 0.057143 / 0.424275 (-0.367132) | 0.006583 / 0.007607 (-0.001024) | 0.469402 / 0.226044 (0.243357) | 4.685623 / 2.268929 (2.416695) | 2.325200 / 55.444624 (-53.119424) | 1.985559 / 6.876477 (-4.890918) | 2.151208 / 2.142072 (0.009136) | 0.589498 / 4.805227 (-4.215730) | 0.125433 / 6.500664 (-6.375231) | 0.060834 / 0.075469 (-0.014636) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.228217 / 1.841788 (-0.613571) | 18.076089 / 8.074308 (10.001780) | 13.814460 / 10.191392 (3.623068) | 0.144674 / 0.680424 (-0.535750) | 0.016749 / 0.534201 (-0.517452) | 0.332839 / 0.579283 (-0.246444) | 0.357211 / 0.434364 (-0.077153) | 0.380367 / 0.540337 (-0.159971) | 0.531177 / 1.386936 (-0.855759) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006006 / 0.011353 (-0.005347) | 0.003552 / 0.011008 (-0.007456) | 0.061822 / 0.038508 (0.023313) | 0.057724 / 0.023109 (0.034615) | 0.462326 / 0.275898 (0.186428) | 0.492842 / 0.323480 (0.169362) | 0.004833 / 0.007986 (-0.003152) | 0.002847 / 0.004328 (-0.001481) | 0.062278 / 0.004250 (0.058028) | 0.046754 / 0.037052 (0.009702) | 0.464185 / 0.258489 (0.205696) | 0.496416 / 0.293841 (0.202576) | 0.028949 / 0.128546 (-0.099597) | 0.008038 / 0.075646 (-0.067608) | 0.067572 / 0.419271 (-0.351700) | 0.041176 / 0.043533 (-0.002356) | 0.460047 / 0.255139 (0.204908) | 0.482728 / 0.283200 (0.199528) | 0.020047 / 0.141683 (-0.121635) | 1.455958 / 1.452155 (0.003804) | 1.525730 / 1.492716 (0.033014) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.283643 / 0.018006 (0.265637) | 0.443046 / 0.000490 (0.442556) | 0.041019 / 0.000200 (0.040819) | 0.000340 / 0.000054 (0.000286) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026229 / 0.037411 (-0.011182) | 0.081498 / 0.014526 (0.066972) | 0.091412 / 0.176557 (-0.085145) | 0.146621 / 0.737135 (-0.590514) | 0.092113 / 0.296338 (-0.204225) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.463525 / 0.215209 (0.248315) | 4.629852 / 2.077655 (2.552198) | 2.564831 / 1.504120 (1.060711) | 2.386976 / 1.541195 (0.845781) | 2.457757 / 1.468490 (0.989266) | 0.507317 / 4.584777 (-4.077460) | 3.142418 / 3.745712 (-0.603294) | 2.851642 / 5.269862 (-2.418219) | 1.894444 / 4.565676 (-2.671233) | 0.058495 / 0.424275 (-0.365780) | 0.006453 / 0.007607 (-0.001154) | 0.545363 / 0.226044 (0.319319) | 5.448092 / 2.268929 (3.179164) | 2.996328 / 55.444624 (-52.448296) | 2.664666 / 6.876477 (-4.211811) | 2.832247 / 2.142072 (0.690174) | 0.597631 / 4.805227 (-4.207596) | 0.126101 / 6.500664 (-6.374563) | 0.062573 / 0.075469 (-0.012896) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.366502 / 1.841788 (-0.475286) | 18.872990 / 8.074308 (10.798682) | 14.892114 / 10.191392 (4.700722) | 0.146668 / 0.680424 (-0.533756) | 0.017876 / 0.534201 (-0.516325) | 0.338490 / 0.579283 (-0.240793) | 0.357471 / 0.434364 (-0.076893) | 0.398730 / 0.540337 (-0.141608) | 0.542464 / 1.386936 (-0.844472) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#a6ff3e846d86814fa6962326e9346a4f1f1e8a80 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009132 / 0.011353 (-0.002221) | 0.005796 / 0.011008 (-0.005212) | 0.119495 / 0.038508 (0.080987) | 0.081708 / 0.023109 (0.058599) | 0.432940 / 0.275898 (0.157042) | 0.466793 / 0.323480 (0.143313) | 0.006464 / 0.007986 (-0.001521) | 0.004308 / 0.004328 (-0.000021) | 0.086344 / 0.004250 (0.082093) | 0.065987 / 0.037052 (0.028935) | 0.445213 / 0.258489 (0.186724) | 0.482405 / 0.293841 (0.188564) | 0.053553 / 0.128546 (-0.074993) | 0.015320 / 0.075646 (-0.060326) | 0.455669 / 0.419271 (0.036397) | 0.071619 / 0.043533 (0.028086) | 0.434843 / 0.255139 (0.179704) | 0.503224 / 0.283200 (0.220025) | 0.038280 / 0.141683 (-0.103403) | 1.901877 / 1.452155 (0.449722) | 2.040406 / 1.492716 (0.547690) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.268275 / 0.018006 (0.250269) | 0.622795 / 0.000490 (0.622305) | 0.004572 / 0.000200 (0.004372) | 0.000107 / 0.000054 (0.000053) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032514 / 0.037411 (-0.004898) | 0.100619 / 0.014526 (0.086093) | 0.118407 / 0.176557 (-0.058149) | 0.190311 / 0.737135 (-0.546824) | 0.117160 / 0.296338 (-0.179178) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.629836 / 0.215209 (0.414627) | 6.236124 / 2.077655 (4.158470) | 2.750775 / 1.504120 (1.246655) | 2.380111 / 1.541195 (0.838916) | 2.487279 / 1.468490 (1.018789) | 0.849568 / 4.584777 (-3.735209) | 5.571308 / 3.745712 (1.825596) | 4.934114 / 5.269862 (-0.335747) | 3.205478 / 4.565676 (-1.360198) | 0.104804 / 0.424275 (-0.319471) | 0.009856 / 0.007607 (0.002248) | 0.753352 / 0.226044 (0.527308) | 7.523482 / 2.268929 (5.254554) | 3.660088 / 55.444624 (-51.784537) | 2.726493 / 6.876477 (-4.149984) | 3.011344 / 2.142072 (0.869271) | 1.093410 / 4.805227 (-3.711817) | 0.229758 / 6.500664 (-6.270906) | 0.081516 / 0.075469 (0.006047) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.700199 / 1.841788 (-0.141588) | 25.238736 / 8.074308 (17.164428) | 23.188131 / 10.191392 (12.996739) | 0.257862 / 0.680424 (-0.422562) | 0.028885 / 0.534201 (-0.505316) | 0.510693 / 0.579283 (-0.068590) | 0.648474 / 0.434364 (0.214110) | 0.576314 / 0.540337 (0.035976) | 0.800606 / 1.386936 (-0.586330) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009426 / 0.011353 (-0.001927) | 0.006205 / 0.011008 (-0.004803) | 0.083947 / 0.038508 (0.045438) | 0.089164 / 0.023109 (0.066055) | 0.540500 / 0.275898 (0.264602) | 0.578825 / 0.323480 (0.255345) | 0.006792 / 0.007986 (-0.001194) | 0.005125 / 0.004328 (0.000797) | 0.083284 / 0.004250 (0.079034) | 0.067539 / 0.037052 (0.030487) | 0.544330 / 0.258489 (0.285841) | 0.593836 / 0.293841 (0.299995) | 0.050647 / 0.128546 (-0.077899) | 0.014688 / 0.075646 (-0.060959) | 0.095977 / 0.419271 (-0.323295) | 0.062326 / 0.043533 (0.018793) | 0.536096 / 0.255139 (0.280957) | 0.578691 / 0.283200 (0.295492) | 0.035488 / 0.141683 (-0.106194) | 1.911145 / 1.452155 (0.458990) | 1.977647 / 1.492716 (0.484931) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.368365 / 0.018006 (0.350359) | 0.609836 / 0.000490 (0.609346) | 0.054720 / 0.000200 (0.054520) | 0.000465 / 0.000054 (0.000411) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.036057 / 0.037411 (-0.001355) | 0.126434 / 0.014526 (0.111908) | 0.124740 / 0.176557 (-0.051817) | 0.198907 / 0.737135 (-0.538228) | 0.138201 / 0.296338 (-0.158137) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.684814 / 0.215209 (0.469605) | 6.738182 / 2.077655 (4.660527) | 3.231054 / 1.504120 (1.726934) | 2.889550 / 1.541195 (1.348355) | 2.933985 / 1.468490 (1.465495) | 0.867176 / 4.584777 (-3.717601) | 5.465475 / 3.745712 (1.719763) | 4.928370 / 5.269862 (-0.341492) | 3.126382 / 4.565676 (-1.439294) | 0.129673 / 0.424275 (-0.294603) | 0.009755 / 0.007607 (0.002148) | 0.797860 / 0.226044 (0.571816) | 8.003178 / 2.268929 (5.734250) | 4.081658 / 55.444624 (-51.362966) | 3.303837 / 6.876477 (-3.572640) | 3.574577 / 2.142072 (1.432505) | 1.064674 / 4.805227 (-3.740554) | 0.232894 / 6.500664 (-6.267770) | 0.082298 / 0.075469 (0.006829) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.858701 / 1.841788 (0.016913) | 25.839794 / 8.074308 (17.765485) | 24.291425 / 10.191392 (14.100033) | 0.250181 / 0.680424 (-0.430243) | 0.034479 / 0.534201 (-0.499722) | 0.540754 / 0.579283 (-0.038529) | 0.615996 / 0.434364 (0.181632) | 0.631499 / 0.540337 (0.091161) | 0.838719 / 1.386936 (-0.548217) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#0b6bb2f0e7a460d4ed04855eafe1184a7ce7c09c \"CML watermark\")\n" ]
2023-08-29T12:29:47
2023-08-29T13:04:59
2023-08-29T12:52:48
MEMBER
null
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6189/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6189/timeline
null
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6189", "html_url": "https://github.com/huggingface/datasets/pull/6189", "diff_url": "https://github.com/huggingface/datasets/pull/6189.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6189.patch", "merged_at": "2023-08-29T12:52:48" }
true
https://api.github.com/repos/huggingface/datasets/issues/6188
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6188/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6188/comments
https://api.github.com/repos/huggingface/datasets/issues/6188/events
https://github.com/huggingface/datasets/issues/6188
1,870,987,640
I_kwDODunzps5vhQF4
6,188
[Feature Request] Check the length of batch before writing so that empty batch is allowed
{ "login": "namespace-Pt", "id": 61188463, "node_id": "MDQ6VXNlcjYxMTg4NDYz", "avatar_url": "https://avatars.githubusercontent.com/u/61188463?v=4", "gravatar_id": "", "url": "https://api.github.com/users/namespace-Pt", "html_url": "https://github.com/namespace-Pt", "followers_url": "https://api.github.com/users/namespace-Pt/followers", "following_url": "https://api.github.com/users/namespace-Pt/following{/other_user}", "gists_url": "https://api.github.com/users/namespace-Pt/gists{/gist_id}", "starred_url": "https://api.github.com/users/namespace-Pt/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/namespace-Pt/subscriptions", "organizations_url": "https://api.github.com/users/namespace-Pt/orgs", "repos_url": "https://api.github.com/users/namespace-Pt/repos", "events_url": "https://api.github.com/users/namespace-Pt/events{/privacy}", "received_events_url": "https://api.github.com/users/namespace-Pt/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[]
2023-08-29T06:37:34
2023-08-29T06:37:34
null
NONE
null
### Use Case I use `dataset.map(process_fn, batched=True)` to process the dataset, with data **augmentations or filtering**. However, when all examples within a batch is filtered out, i.e. **an empty batch is returned**, the following error will be thrown: ``` ValueError: Schema and number of arrays unequal ``` This is because the empty batch does not comply with the schema of other batches. I think an empty batch should be allowed to facilitate coding (one does not need to assign an empty list manually for all keys.) A simple fix is to check the length of `batch` before writing: ``` if len(batch): writer.write_batch(batch) ``` instead of https://github.com/huggingface/datasets/blob/74d60213dcbd7c99484c62ce1d3dfd90a1df0770/src/datasets/arrow_dataset.py#L3493
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6188/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6188/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6187
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6187/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6187/comments
https://api.github.com/repos/huggingface/datasets/issues/6187/events
https://github.com/huggingface/datasets/issues/6187
1,870,936,143
I_kwDODunzps5vhDhP
6,187
Couldn't find a dataset script at /content/tsv/tsv.py or any data file in the same directory
{ "login": "andysingal", "id": 20493493, "node_id": "MDQ6VXNlcjIwNDkzNDkz", "avatar_url": "https://avatars.githubusercontent.com/u/20493493?v=4", "gravatar_id": "", "url": "https://api.github.com/users/andysingal", "html_url": "https://github.com/andysingal", "followers_url": "https://api.github.com/users/andysingal/followers", "following_url": "https://api.github.com/users/andysingal/following{/other_user}", "gists_url": "https://api.github.com/users/andysingal/gists{/gist_id}", "starred_url": "https://api.github.com/users/andysingal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/andysingal/subscriptions", "organizations_url": "https://api.github.com/users/andysingal/orgs", "repos_url": "https://api.github.com/users/andysingal/repos", "events_url": "https://api.github.com/users/andysingal/events{/privacy}", "received_events_url": "https://api.github.com/users/andysingal/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "Hi! You can load this dataset with:\r\n```python\r\ndata_files = {\r\n \"train\": \"/content/PUBHEALTH/train.tsv\",\r\n \"validation\": \"/content/PUBHEALTH/dev.tsv\",\r\n \"test\": \"/content/PUBHEALTH/test.tsv\",\r\n}\r\n\r\ntsv_datasets_reloaded = load_dataset(\"csv\", data_files=data_files, sep=\"\\t\")\r\n```\r\n\r\nTo support your `load_dataset` call, defining aliases for the packaged builders, as suggested in https://github.com/huggingface/datasets/issues/5625, must be implemented. We can consider adding this feature if more people request it.\r\n \r\n(Also answered on the Discord [here](https://discord.com/channels/879548962464493619/1145956791134470224/1146071491260186744))" ]
2023-08-29T05:49:56
2023-08-29T16:21:45
null
NONE
null
### Describe the bug ``` --------------------------------------------------------------------------- FileNotFoundError Traceback (most recent call last) [<ipython-input-48-6a7b3e847019>](https://localhost:8080/#) in <cell line: 7>() 5 } 6 ----> 7 csv_datasets_reloaded = load_dataset("tsv", data_files=data_files) 8 csv_datasets_reloaded 2 frames [/usr/local/lib/python3.10/dist-packages/datasets/load.py](https://localhost:8080/#) in dataset_module_factory(path, revision, download_config, download_mode, dynamic_modules_path, data_dir, data_files, **download_kwargs) 1489 raise e1 from None 1490 if isinstance(e1, FileNotFoundError): -> 1491 raise FileNotFoundError( 1492 f"Couldn't find a dataset script at {relative_to_absolute_path(combined_path)} or any data file in the same directory. " 1493 f"Couldn't find '{path}' on the Hugging Face Hub either: {type(e1).__name__}: {e1}" FileNotFoundError: Couldn't find a dataset script at /content/tsv/tsv.py or any data file in the same directory. Couldn't find 'tsv' on the Hugging Face Hub either: FileNotFoundError: Dataset 'tsv' doesn't exist on the Hub ``` ### Steps to reproduce the bug ``` data_files = { "train": "/content/PUBHEALTH/train.tsv", "validation": "/content/PUBHEALTH/dev.tsv", "test": "/content/PUBHEALTH/test.tsv", } tsv_datasets_reloaded = load_dataset("tsv", data_files=data_files) tsv_datasets_reloaded ``` ``` --------------------------------------------------------------------------- FileNotFoundError Traceback (most recent call last) <ipython-input-48-6a7b3e847019> in <cell line: 7>() 5 } 6 ----> 7 csv_datasets_reloaded = load_dataset("tsv", data_files=data_files) 8 csv_datasets_reloaded 2 frames /usr/local/lib/python3.10/dist-packages/datasets/load.py in dataset_module_factory(path, revision, download_config, download_mode, dynamic_modules_path, data_dir, data_files, **download_kwargs) 1489 raise e1 from None 1490 if isinstance(e1, FileNotFoundError): -> 1491 raise FileNotFoundError( 1492 f"Couldn't find a dataset script at {relative_to_absolute_path(combined_path)} or any data file in the same directory. " 1493 f"Couldn't find '{path}' on the Hugging Face Hub either: {type(e1).__name__}: {e1}" FileNotFoundError: Couldn't find a dataset script at /content/tsv/tsv.py or any data file in the same directory. Couldn't find 'tsv' on the Hugging Face Hub either: FileNotFoundError: Dataset 'tsv' doesn't exist on the Hub ``` ### Expected behavior load the data, push to hub ### Environment info jupyter notebook RTX 3090
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6187/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6187/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6186
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6186/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6186/comments
https://api.github.com/repos/huggingface/datasets/issues/6186/events
https://github.com/huggingface/datasets/issues/6186
1,869,431,457
I_kwDODunzps5vbUKh
6,186
Feature request: add code example of multi-GPU processing
{ "login": "NielsRogge", "id": 48327001, "node_id": "MDQ6VXNlcjQ4MzI3MDAx", "avatar_url": "https://avatars.githubusercontent.com/u/48327001?v=4", "gravatar_id": "", "url": "https://api.github.com/users/NielsRogge", "html_url": "https://github.com/NielsRogge", "followers_url": "https://api.github.com/users/NielsRogge/followers", "following_url": "https://api.github.com/users/NielsRogge/following{/other_user}", "gists_url": "https://api.github.com/users/NielsRogge/gists{/gist_id}", "starred_url": "https://api.github.com/users/NielsRogge/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/NielsRogge/subscriptions", "organizations_url": "https://api.github.com/users/NielsRogge/orgs", "repos_url": "https://api.github.com/users/NielsRogge/repos", "events_url": "https://api.github.com/users/NielsRogge/events{/privacy}", "received_events_url": "https://api.github.com/users/NielsRogge/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892861, "node_id": "MDU6TGFiZWwxOTM1ODkyODYx", "url": "https://api.github.com/repos/huggingface/datasets/labels/documentation", "name": "documentation", "color": "0075ca", "default": true, "description": "Improvements or additions to documentation" }, { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" } ]
open
false
null
[]
null
[ "That'd be a great idea! @mariosasko or @lhoestq, would it be possible to fix the code snippet or do you have another suggested way for doing this?" ]
2023-08-28T10:00:59
2023-08-29T17:39:03
null
CONTRIBUTOR
null
### Feature request Would be great to add a code example of how to do multi-GPU processing with 🤗 Datasets in the documentation. cc @stevhliu Currently the docs has a small [section](https://huggingface.co/docs/datasets/v2.3.2/en/process#map) on this saying "your big GPU call goes here", however it didn't work for me out-of-the-box. Let's say you have a PyTorch model that can do translation, and you have multiple GPUs. In that case, you'd like to duplicate the model on each GPU, each processing (translating) a chunk of the data in parallel. Here's how I tried to do that: ``` from datasets import load_dataset from transformers import AutoModelForSeq2SeqLM, AutoTokenizer from multiprocess import set_start_method import torch import os dataset = load_dataset("mlfoundations/datacomp_small") tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M") model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M") # put model on each available GPU # also, should I do it like this or use nn.DataParallel? model.to("cuda:0") model.to("cuda:1") set_start_method("spawn") def translate_captions(batch, rank): os.environ["CUDA_VISIBLE_DEVICES"] = str(rank % torch.cuda.device_count()) texts = batch["text"] inputs = tokenizer(texts, padding=True, truncation=True, return_tensors="pt").to(model.device) translated_tokens = model.generate( **inputs, forced_bos_token_id=tokenizer.lang_code_to_id["eng_Latn"], max_length=30 ) translated_texts = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True) batch["translated_text"] = translated_texts return batch updated_dataset = dataset.map(translate_captions, with_rank=True, num_proc=2, batched=True, batch_size=256) ``` I've personally tried running this script on a machine with 2 A100 GPUs. ## Error 1 Running the code snippet above from the terminal (python script.py) resulted in the following error: ``` Traceback (most recent call last): File "<string>", line 1, in <module> File "/home/niels/anaconda3/envs/datacomp/lib/python3.10/site-packages/multiprocess/spawn.py", line 116, in spawn_main exitcode = _main(fd, parent_sentinel) File "/home/niels/anaconda3/envs/datacomp/lib/python3.10/site-packages/multiprocess/spawn.py", line 125, in _main prepare(preparation_data) File "/home/niels/anaconda3/envs/datacomp/lib/python3.10/site-packages/multiprocess/spawn.py", line 236, in prepare _fixup_main_from_path(data['init_main_from_path']) File "/home/niels/anaconda3/envs/datacomp/lib/python3.10/site-packages/multiprocess/spawn.py", line 287, in _fixup_main_from_path main_content = runpy.run_path(main_path, File "/home/niels/anaconda3/envs/datacomp/lib/python3.10/runpy.py", line 289, in run_path return _run_module_code(code, init_globals, run_name, File "/home/niels/anaconda3/envs/datacomp/lib/python3.10/runpy.py", line 96, in _run_module_code _run_code(code, mod_globals, init_globals, File "/home/niels/anaconda3/envs/datacomp/lib/python3.10/runpy.py", line 86, in _run_code exec(code, run_globals) File "/home/niels/python_projects/datacomp/datasets_multi_gpu.py", line 16, in <module> set_start_method("spawn") File "/home/niels/anaconda3/envs/datacomp/lib/python3.10/site-packages/multiprocess/context.py", line 247, in set_start_method raise RuntimeError('context has already been set') RuntimeError: context has already been set ``` ## Error 2 Then, based on [this Stackoverflow answer](https://stackoverflow.com/a/71616344/7762882), I put the `set_start_method("spawn")` section in a try: catch block. This resulted in the following error: ``` File "/home/niels/anaconda3/envs/datacomp/lib/python3.10/site-packages/datasets/dataset_dict.py", line 817, in <dictcomp> k: dataset.map( File "/home/niels/anaconda3/envs/datacomp/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 2926, in map with Pool(nb_of_missing_shards, initargs=initargs, initializer=initializer) as pool: File "/home/niels/anaconda3/envs/datacomp/lib/python3.10/site-packages/multiprocess/context.py", line 119, in Pool return Pool(processes, initializer, initargs, maxtasksperchild, File "/home/niels/anaconda3/envs/datacomp/lib/python3.10/site-packages/multiprocess/pool.py", line 215, in __init__ self._repopulate_pool() File "/home/niels/anaconda3/envs/datacomp/lib/python3.10/site-packages/multiprocess/pool.py", line 306, in _repopulate_pool return self._repopulate_pool_static(self._ctx, self.Process, File "/home/niels/anaconda3/envs/datacomp/lib/python3.10/site-packages/multiprocess/pool.py", line 329, in _repopulate_pool_static w.start() File "/home/niels/anaconda3/envs/datacomp/lib/python3.10/site-packages/multiprocess/process.py", line 121, in start self._popen = self._Popen(self) File "/home/niels/anaconda3/envs/datacomp/lib/python3.10/site-packages/multiprocess/context.py", line 288, in _Popen return Popen(process_obj) File "/home/niels/anaconda3/envs/datacomp/lib/python3.10/site-packages/multiprocess/popen_spawn_posix.py", line 32, in __init__ super().__init__(process_obj) File "/home/niels/anaconda3/envs/datacomp/lib/python3.10/site-packages/multiprocess/popen_fork.py", line 19, in __init__ self._launch(process_obj) File "/home/niels/anaconda3/envs/datacomp/lib/python3.10/site-packages/multiprocess/popen_spawn_posix.py", line 42, in _launch prep_data = spawn.get_preparation_data(process_obj._name) File "/home/niels/anaconda3/envs/datacomp/lib/python3.10/site-packages/multiprocess/spawn.py", line 154, in get_preparation_data _check_not_importing_main() File "/home/niels/anaconda3/envs/datacomp/lib/python3.10/site-packages/multiprocess/spawn.py", line 134, in _check_not_importing_main raise RuntimeError(''' RuntimeError: An attempt has been made to start a new process before the current process has finished its bootstrapping phase. This probably means that you are not using fork to start your child processes and you have forgotten to use the proper idiom in the main module: if __name__ == '__main__': freeze_support() ... The "freeze_support()" line can be omitted if the program is not going to be frozen to produce an executable. ``` So then I put the last line under a `if __name__ == '__main__':` block. Then the code snippet seemed to work, but it seemed that it's only leveraging a single GPU (based on monitoring `nvidia-smi`): ``` Mon Aug 28 12:19:24 2023 +-----------------------------------------------------------------------------+ | NVIDIA-SMI 515.65.01 Driver Version: 515.65.01 CUDA Version: 11.7 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |===============================+======================+======================| | 0 NVIDIA A100-SXM... On | 00000000:01:00.0 Off | 0 | | N/A 55C P0 76W / 275W | 8747MiB / 81920MiB | 0% Default | | | | Disabled | +-------------------------------+----------------------+----------------------+ | 1 NVIDIA A100-SXM... On | 00000000:47:00.0 Off | 0 | | N/A 67C P0 274W / 275W | 59835MiB / 81920MiB | 100% Default | | | | Disabled | ``` Both GPUs should have equal GPU usage, but I've always noticed that the last GPU has way more usage than the other ones. This made me think that `os.environ["CUDA_VISIBLE_DEVICES"] = str(rank % torch.cuda.device_count())` might not work inside a Python script, especially if done after importing PyTorch? ### Motivation Would be great to clarify how to do multi-GPU data processing. ### Your contribution If my code snippet can be fixed, I can contribute it to the docs :)
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6186/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6186/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6185
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6185/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6185/comments
https://api.github.com/repos/huggingface/datasets/issues/6185/events
https://github.com/huggingface/datasets/issues/6185
1,868,077,748
I_kwDODunzps5vWJq0
6,185
Error in saving the PIL image into *.arrow files using datasets.arrow_writer
{ "login": "HaozheZhao", "id": 14247682, "node_id": "MDQ6VXNlcjE0MjQ3Njgy", "avatar_url": "https://avatars.githubusercontent.com/u/14247682?v=4", "gravatar_id": "", "url": "https://api.github.com/users/HaozheZhao", "html_url": "https://github.com/HaozheZhao", "followers_url": "https://api.github.com/users/HaozheZhao/followers", "following_url": "https://api.github.com/users/HaozheZhao/following{/other_user}", "gists_url": "https://api.github.com/users/HaozheZhao/gists{/gist_id}", "starred_url": "https://api.github.com/users/HaozheZhao/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/HaozheZhao/subscriptions", "organizations_url": "https://api.github.com/users/HaozheZhao/orgs", "repos_url": "https://api.github.com/users/HaozheZhao/repos", "events_url": "https://api.github.com/users/HaozheZhao/events{/privacy}", "received_events_url": "https://api.github.com/users/HaozheZhao/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "You can cast the `input_image` column to the `Image` type to fix the issue:\r\n```python\r\nds.cast_column(\"input_image\", datasets.Image())\r\n```" ]
2023-08-26T12:15:57
2023-08-29T14:49:58
null
NONE
null
### Describe the bug I am using the ArrowWriter from datasets.arrow_writer to save a json-style file as arrow files. Within the dictionary, it contains a feature called "image" which is a list of PIL.Image objects. I am saving the json using the following script: ``` def save_to_arrow(path,temp): with ArrowWriter(path=path,writer_batch_size=20) as writer: writer.write_batch(temp) writer.finalize() ``` However, when I attempt to restore the dataset and use the ```Dataset.from_file(path)``` function to load the arrow file, there seems to be an issue with the PIL.Image object in the dataset. The list of PIL.Images appears as follows rather than a normal PIL.Image object: ![1693051705440](https://github.com/huggingface/datasets/assets/14247682/03b204c2-d0fa-4d19-beff-6f4d7b83c848) ### Steps to reproduce the bug 1. Storing the data json into arrow files: ``` def save_to_arrow(path,temp): with ArrowWriter(path=path,writer_batch_size=20) as writer: writer.write_batch(temp) writer.finalize() save_to_arrow( path, json_file ) ``` 2. try to load the arrow file into the Dataset object using the ```Dataset.from_file(path)``` ### Expected behavior Except to saving the contained "image" feature as a list PIL.Image objects as the arrow file. And I can restore the dataset from the file. ### Environment info - `datasets` version: 2.12.0 - Platform: Linux-5.4.0-150-generic-x86_64-with-glibc2.17 - Python version: 3.8.17 - Huggingface_hub version: 0.16.4 - PyArrow version: 12.0.1 - Pandas version: 1.4.4
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6185/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6185/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6184
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6184/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6184/comments
https://api.github.com/repos/huggingface/datasets/issues/6184/events
https://github.com/huggingface/datasets/issues/6184
1,867,766,143
I_kwDODunzps5vU9l_
6,184
Map cache does not detect function changes in another module
{ "login": "jonathanasdf", "id": 511073, "node_id": "MDQ6VXNlcjUxMTA3Mw==", "avatar_url": "https://avatars.githubusercontent.com/u/511073?v=4", "gravatar_id": "", "url": "https://api.github.com/users/jonathanasdf", "html_url": "https://github.com/jonathanasdf", "followers_url": "https://api.github.com/users/jonathanasdf/followers", "following_url": "https://api.github.com/users/jonathanasdf/following{/other_user}", "gists_url": "https://api.github.com/users/jonathanasdf/gists{/gist_id}", "starred_url": "https://api.github.com/users/jonathanasdf/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jonathanasdf/subscriptions", "organizations_url": "https://api.github.com/users/jonathanasdf/orgs", "repos_url": "https://api.github.com/users/jonathanasdf/repos", "events_url": "https://api.github.com/users/jonathanasdf/events{/privacy}", "received_events_url": "https://api.github.com/users/jonathanasdf/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892865, "node_id": "MDU6TGFiZWwxOTM1ODkyODY1", "url": "https://api.github.com/repos/huggingface/datasets/labels/duplicate", "name": "duplicate", "color": "cfd3d7", "default": true, "description": "This issue or pull request already exists" } ]
closed
false
null
[]
null
[ "This issue is a duplicate of https://github.com/huggingface/datasets/issues/3297. This is a limitation of `dill`, a package we use for caching (non-`__main__` module objects are serialized by reference). You can find more info about it here: https://github.com/uqfoundation/dill/issues/424.\r\n\r\nIn your case, moving \r\n```\r\ndata = datasets.load_dataset('json', data_files=['/tmp/test.json'], split='train')\r\ndata = data.map(transform)\r\n``` \r\nto `test.py` and setting `transform.__module__ = None` at the end of `dataset.py` should fix the issue.", "I understand this may be a limitation of an upstream tool, but for a user for datasets this is very annoying, as when you have dozens of different datasets with different preprocessing functions you can't really move them all into the same file. It may be worth seeing if there is a way to specialize the dependency (eg. subclass it) and enforce behaviors that makes sense for your product.\r\n\r\nI was able to work around this for now by setting `__module__ = None`. If such workarounds are required for now it may be better to document it somewhere than a single obscure issue from a long time ago.\r\n\r\nAs this is a duplicate issue I'm closing it.\r\n\r\nI have another issue with the cache https://github.com/huggingface/datasets/issues/6179 can you take a look?" ]
2023-08-25T22:59:14
2023-08-29T20:57:07
2023-08-29T20:56:49
NONE
null
```python # dataset.py import os import datasets if not os.path.exists('/tmp/test.json'): with open('/tmp/test.json', 'w') as file: file.write('[{"text": "hello"}]') def transform(example): text = example['text'] # text += ' world' return {'text': text} data = datasets.load_dataset('json', data_files=['/tmp/test.json'], split='train') data = data.map(transform) ``` ```python # test.py import dataset print(next(iter(dataset.data))) ``` Initialize cache ``` python3 test.py # {'text': 'hello'} ``` Edit dataset.py and uncomment the commented line, run again ``` python3 test.py # {'text': 'hello'} # expected: {'text': 'hello world'} ``` Clear cache and run again ``` rm -rf ~/.cache/huggingface/datasets/* python3 test.py # {'text': 'hello world'} ``` If instead the two files are combined, then changes to the function are detected correctly. But it's expected when working on any realistic codebase that things will be modularized into separate files.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6184/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6184/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6183
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6183/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6183/comments
https://api.github.com/repos/huggingface/datasets/issues/6183/events
https://github.com/huggingface/datasets/issues/6183
1,867,743,276
I_kwDODunzps5vU4As
6,183
Load dataset with non-existent file
{ "login": "freQuensy23-coder", "id": 64750224, "node_id": "MDQ6VXNlcjY0NzUwMjI0", "avatar_url": "https://avatars.githubusercontent.com/u/64750224?v=4", "gravatar_id": "", "url": "https://api.github.com/users/freQuensy23-coder", "html_url": "https://github.com/freQuensy23-coder", "followers_url": "https://api.github.com/users/freQuensy23-coder/followers", "following_url": "https://api.github.com/users/freQuensy23-coder/following{/other_user}", "gists_url": "https://api.github.com/users/freQuensy23-coder/gists{/gist_id}", "starred_url": "https://api.github.com/users/freQuensy23-coder/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/freQuensy23-coder/subscriptions", "organizations_url": "https://api.github.com/users/freQuensy23-coder/orgs", "repos_url": "https://api.github.com/users/freQuensy23-coder/repos", "events_url": "https://api.github.com/users/freQuensy23-coder/events{/privacy}", "received_events_url": "https://api.github.com/users/freQuensy23-coder/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Same problem", "This was fixed in https://github.com/huggingface/datasets/pull/6155, which will be included in the next release (or you can install `datasets` from source to use it immediately)." ]
2023-08-25T22:21:22
2023-08-29T13:26:22
2023-08-29T13:26:22
NONE
null
### Describe the bug When load a dataset from datasets and pass a wrong path to json with the data, error message does not contain something abount "wrong path" or "file do not exist" - ```SchemaInferenceError: Please pass `features` or at least one example when writing data``` ### Steps to reproduce the bug ```python from datasets import load_dataset load_dataset('json', data_files='/home/alexey/unreal_file.json') ``` ### Expected behavior Raise os FileNotFound error or custom error with informative message ### Environment info ``` # packages in environment at /home/alexey/.conda/envs/alex_LoRA: # # Name Version Build Channel _libgcc_mutex 0.1 main _openmp_mutex 5.1 1_gnu accelerate 0.21.0 pypi_0 pypi aiohttp 3.8.5 pypi_0 pypi aiosignal 1.3.1 pypi_0 pypi antlr4-python3-runtime 4.9.3 pypi_0 pypi appdirs 1.4.4 pypi_0 pypi asttokens 2.0.5 pyhd3eb1b0_0 async-timeout 4.0.3 pypi_0 pypi attrs 23.1.0 pypi_0 pypi backcall 0.2.0 pyhd3eb1b0_0 bitsandbytes 0.41.1 pypi_0 pypi bzip2 1.0.8 h7b6447c_0 ca-certificates 2023.05.30 h06a4308_0 certifi 2023.7.22 pypi_0 pypi charset-normalizer 3.2.0 pypi_0 pypi click 8.1.6 pypi_0 pypi cmake 3.27.2 pypi_0 pypi comm 0.1.2 py310h06a4308_0 contourpy 1.1.0 pypi_0 pypi cycler 0.11.0 pypi_0 pypi datasets 2.14.4 pypi_0 pypi debugpy 1.6.7 py310h6a678d5_0 decorator 5.1.1 pyhd3eb1b0_0 dill 0.3.7 pypi_0 pypi docker-pycreds 0.4.0 pypi_0 pypi executing 0.8.3 pyhd3eb1b0_0 filelock 3.12.2 pypi_0 pypi fire 0.5.0 pypi_0 pypi fonttools 4.42.0 pypi_0 pypi frozenlist 1.4.0 pypi_0 pypi fsspec 2023.6.0 pypi_0 pypi gitdb 4.0.10 pypi_0 pypi gitpython 3.1.32 pypi_0 pypi huggingface-hub 0.16.4 pypi_0 pypi idna 3.4 pypi_0 pypi ipykernel 6.25.0 py310h2f386ee_0 ipython 8.12.2 py310h06a4308_0 ipython-genutils 0.2.0 pypi_0 pypi ipywidgets 8.0.4 py310h06a4308_0 jedi 0.18.1 py310h06a4308_1 jinja2 3.1.2 pypi_0 pypi jsonschema 4.19.0 pypi_0 pypi jsonschema-specifications 2023.7.1 pypi_0 pypi jupyter_client 8.1.0 py310h06a4308_0 jupyter_core 5.3.0 py310h06a4308_0 jupyterlab_widgets 3.0.5 py310h06a4308_0 kiwisolver 1.4.4 pypi_0 pypi ld_impl_linux-64 2.38 h1181459_1 libffi 3.3 he6710b0_2 libgcc-ng 11.2.0 h1234567_1 libgomp 11.2.0 h1234567_1 libsodium 1.0.18 h7b6447c_0 libstdcxx-ng 11.2.0 h1234567_1 libuuid 1.41.5 h5eee18b_0 lightning-utilities 0.9.0 pypi_0 pypi lit 16.0.6 pypi_0 pypi markupsafe 2.1.3 pypi_0 pypi matplotlib 3.7.2 pypi_0 pypi matplotlib-inline 0.1.6 py310h06a4308_0 mpmath 1.3.0 pypi_0 pypi multidict 6.0.4 pypi_0 pypi multiprocess 0.70.15 pypi_0 pypi nbformat 4.2.0 pypi_0 pypi ncurses 6.4 h6a678d5_0 nest-asyncio 1.5.6 py310h06a4308_0 networkx 3.1 pypi_0 pypi numpy 1.25.2 pypi_0 pypi nvidia-cublas-cu11 11.10.3.66 pypi_0 pypi nvidia-cuda-cupti-cu11 11.7.101 pypi_0 pypi nvidia-cuda-nvrtc-cu11 11.7.99 pypi_0 pypi nvidia-cuda-runtime-cu11 11.7.99 pypi_0 pypi nvidia-cudnn-cu11 8.5.0.96 pypi_0 pypi nvidia-cufft-cu11 10.9.0.58 pypi_0 pypi nvidia-curand-cu11 10.2.10.91 pypi_0 pypi nvidia-cusolver-cu11 11.4.0.1 pypi_0 pypi nvidia-cusparse-cu11 11.7.4.91 pypi_0 pypi nvidia-nccl-cu11 2.14.3 pypi_0 pypi nvidia-nvtx-cu11 11.7.91 pypi_0 pypi omegaconf 2.3.0 pypi_0 pypi openssl 1.1.1v h7f8727e_0 packaging 23.0 py310h06a4308_0 pandas 2.0.3 pypi_0 pypi parso 0.8.3 pyhd3eb1b0_0 pathtools 0.1.2 pypi_0 pypi peft 0.4.0 pypi_0 pypi pexpect 4.8.0 pyhd3eb1b0_3 pickleshare 0.7.5 pyhd3eb1b0_1003 pillow 10.0.0 pypi_0 pypi pip 23.2.1 py310h06a4308_0 platformdirs 2.5.2 py310h06a4308_0 plotly 5.16.1 pypi_0 pypi prompt-toolkit 3.0.36 py310h06a4308_0 protobuf 4.24.0 pypi_0 pypi psutil 5.9.0 py310h5eee18b_0 ptyprocess 0.7.0 pyhd3eb1b0_2 pure_eval 0.2.2 pyhd3eb1b0_0 pyarrow 12.0.1 pypi_0 pypi pygments 2.15.1 py310h06a4308_1 pyparsing 3.0.9 pypi_0 pypi python 3.10.0 h12debd9_5 python-dateutil 2.8.2 pyhd3eb1b0_0 pytorch-lightning 2.0.6 pypi_0 pypi pytz 2023.3 pypi_0 pypi pyyaml 6.0.1 pypi_0 pypi pyzmq 25.1.0 py310h6a678d5_0 readline 8.2 h5eee18b_0 referencing 0.30.2 pypi_0 pypi regex 2023.8.8 pypi_0 pypi requests 2.31.0 pypi_0 pypi rpds-py 0.9.2 pypi_0 pypi safetensors 0.3.2 pypi_0 pypi scipy 1.11.1 pypi_0 pypi sentencepiece 0.1.99 pypi_0 pypi sentry-sdk 1.29.2 pypi_0 pypi setproctitle 1.3.2 pypi_0 pypi setuptools 68.0.0 py310h06a4308_0 six 1.16.0 pyhd3eb1b0_1 smmap 5.0.0 pypi_0 pypi sqlite 3.41.2 h5eee18b_0 stack_data 0.2.0 pyhd3eb1b0_0 sympy 1.12 pypi_0 pypi tenacity 8.2.3 pypi_0 pypi termcolor 2.3.0 pypi_0 pypi tk 8.6.12 h1ccaba5_0 tokenizers 0.13.3 pypi_0 pypi torch 2.0.1 pypi_0 pypi torchmetrics 1.0.3 pypi_0 pypi tornado 6.3.2 py310h5eee18b_0 tqdm 4.66.1 pypi_0 pypi traitlets 5.7.1 py310h06a4308_0 transformers 4.31.0 pypi_0 pypi triton 2.0.0 pypi_0 pypi typing-extensions 4.7.1 pypi_0 pypi tzdata 2023.3 pypi_0 pypi urllib3 2.0.4 pypi_0 pypi wandb 0.15.8 pypi_0 pypi wcwidth 0.2.5 pyhd3eb1b0_0 wheel 0.38.4 py310h06a4308_0 widgetsnbextension 4.0.5 py310h06a4308_0 xxhash 3.3.0 pypi_0 pypi xz 5.4.2 h5eee18b_0 yarl 1.9.2 pypi_0 pypi zeromq 4.3.4 h2531618_0 zlib 1.2.13 h5eee18b_0 active environment : None user config file : /home/alexey/.condarc populated config files : conda version : 23.1.0 conda-build version : 3.22.0 python version : 3.9.13.final.0 virtual packages : __archspec=1=x86_64 __cuda=12.0=0 __glibc=2.35=0 __linux=5.19.0=0 __unix=0=0 base environment : /opt/anaconda/anaconda3 (read only) conda av data dir : /opt/anaconda/anaconda3/etc/conda conda av metadata url : None channel URLs : https://repo.anaconda.com/pkgs/main/linux-64 https://repo.anaconda.com/pkgs/main/noarch https://repo.anaconda.com/pkgs/r/linux-64 https://repo.anaconda.com/pkgs/r/noarch package cache : /opt/anaconda/anaconda3/pkgs /home/alexey/.conda/pkgs envs directories : /home/alexey/.conda/envs /opt/anaconda/anaconda3/envs platform : linux-64 user-agent : conda/23.1.0 requests/2.31.0 CPython/3.9.13 Linux/5.19.0-46-generic ubuntu/22.04.2 glibc/2.35 UID:GID : 1009:1009 netrc file : /home/alexey/.netrc offline mode : False ```
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6183/reactions", "total_count": 1, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 1, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6183/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6182
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6182/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6182/comments
https://api.github.com/repos/huggingface/datasets/issues/6182/events
https://github.com/huggingface/datasets/issues/6182
1,867,203,131
I_kwDODunzps5vS0I7
6,182
Loading Meteor metric in HF evaluate module crashes due to datasets import issue
{ "login": "dsashulya", "id": 42322648, "node_id": "MDQ6VXNlcjQyMzIyNjQ4", "avatar_url": "https://avatars.githubusercontent.com/u/42322648?v=4", "gravatar_id": "", "url": "https://api.github.com/users/dsashulya", "html_url": "https://github.com/dsashulya", "followers_url": "https://api.github.com/users/dsashulya/followers", "following_url": "https://api.github.com/users/dsashulya/following{/other_user}", "gists_url": "https://api.github.com/users/dsashulya/gists{/gist_id}", "starred_url": "https://api.github.com/users/dsashulya/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/dsashulya/subscriptions", "organizations_url": "https://api.github.com/users/dsashulya/orgs", "repos_url": "https://api.github.com/users/dsashulya/repos", "events_url": "https://api.github.com/users/dsashulya/events{/privacy}", "received_events_url": "https://api.github.com/users/dsashulya/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "Our minimal Python version requirement is 3.8, so we dropped `importlib_metadata`. \r\n\r\nFeel free to open a PR in the `evaluate` repo to replace the problematic import with\r\n```python\r\nif PY_VERSION < version.parse(\"3.8\"):\r\n import importlib_metadata\r\nelse:\r\n import importlib.metadata as importlib_metadata\r\n```" ]
2023-08-25T14:54:06
2023-08-25T17:36:33
null
NONE
null
### Describe the bug When using python3.9 and ```evaluate``` module loading Meteor metric crashes at a non-existent import from ```datasets.config``` in ```datasets v2.14``` ### Steps to reproduce the bug ``` from evaluate import load meteor = load("meteor") ``` produces the following error: ``` from datasets.config import importlib_metadata, version ImportError: cannot import name 'importlib_metadata' from 'datasets.config' (<path_to_project>/venv/lib/python3.9/site-packages/datasets/config.py) ``` ### Expected behavior ```datasets``` of v2.10 has the following workaround in ```config.py```: ``` if PY_VERSION < version.parse("3.8"): import importlib_metadata else: import importlib.metadata as importlib_metadata ``` However, it's absent in v2.14 which might be the cause of the issue. ### Environment info - `datasets` version: 2.14.4 - Platform: macOS-13.5-arm64-arm-64bit - Python version: 3.9.6 - Huggingface_hub version: 0.16.4 - PyArrow version: 12.0.1 - Pandas version: 2.0.3 - Evaluate version: 0.4.0
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6182/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6182/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6181
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6181/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6181/comments
https://api.github.com/repos/huggingface/datasets/issues/6181/events
https://github.com/huggingface/datasets/pull/6181
1,867,035,522
PR_kwDODunzps5Yy2VO
6,181
Fix import in `image_load` doc
{ "login": "mariosasko", "id": 47462742, "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "gravatar_id": "", "url": "https://api.github.com/users/mariosasko", "html_url": "https://github.com/mariosasko", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "repos_url": "https://api.github.com/users/mariosasko/repos", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009072 / 0.011353 (-0.002281) | 0.006088 / 0.011008 (-0.004920) | 0.134520 / 0.038508 (0.096011) | 0.074935 / 0.023109 (0.051826) | 0.480364 / 0.275898 (0.204466) | 0.568943 / 0.323480 (0.245464) | 0.006821 / 0.007986 (-0.001164) | 0.004941 / 0.004328 (0.000612) | 0.083274 / 0.004250 (0.079023) | 0.061080 / 0.037052 (0.024028) | 0.478960 / 0.258489 (0.220471) | 0.542720 / 0.293841 (0.248879) | 0.058023 / 0.128546 (-0.070524) | 0.020120 / 0.075646 (-0.055526) | 0.492680 / 0.419271 (0.073409) | 0.079118 / 0.043533 (0.035585) | 0.425087 / 0.255139 (0.169948) | 0.603228 / 0.283200 (0.320028) | 0.044102 / 0.141683 (-0.097581) | 2.138848 / 1.452155 (0.686693) | 2.454418 / 1.492716 (0.961702) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.255745 / 0.018006 (0.237738) | 0.587559 / 0.000490 (0.587069) | 0.006872 / 0.000200 (0.006672) | 0.000111 / 0.000054 (0.000056) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.038480 / 0.037411 (0.001069) | 0.115479 / 0.014526 (0.100953) | 0.138395 / 0.176557 (-0.038161) | 0.218007 / 0.737135 (-0.519129) | 0.128866 / 0.296338 (-0.167472) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.756089 / 0.215209 (0.540880) | 7.754631 / 2.077655 (5.676976) | 3.615716 / 1.504120 (2.111596) | 2.994327 / 1.541195 (1.453132) | 3.196169 / 1.468490 (1.727679) | 1.066937 / 4.584777 (-3.517840) | 6.079595 / 3.745712 (2.333883) | 5.455523 / 5.269862 (0.185661) | 3.559036 / 4.565676 (-1.006640) | 0.113044 / 0.424275 (-0.311231) | 0.011401 / 0.007607 (0.003794) | 0.961475 / 0.226044 (0.735430) | 8.664226 / 2.268929 (6.395298) | 4.203804 / 55.444624 (-51.240821) | 3.122437 / 6.876477 (-3.754039) | 3.549168 / 2.142072 (1.407095) | 1.213035 / 4.805227 (-3.592193) | 0.274725 / 6.500664 (-6.225939) | 0.094499 / 0.075469 (0.019030) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.770299 / 1.841788 (-0.071489) | 27.644591 / 8.074308 (19.570283) | 23.239529 / 10.191392 (13.048137) | 0.270185 / 0.680424 (-0.410238) | 0.033563 / 0.534201 (-0.500638) | 0.588301 / 0.579283 (0.009018) | 0.658746 / 0.434364 (0.224382) | 0.644476 / 0.540337 (0.104139) | 0.834314 / 1.386936 (-0.552622) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.011021 / 0.011353 (-0.000332) | 0.006719 / 0.011008 (-0.004289) | 0.087669 / 0.038508 (0.049161) | 0.088905 / 0.023109 (0.065796) | 0.594230 / 0.275898 (0.318332) | 0.620929 / 0.323480 (0.297449) | 0.006776 / 0.007986 (-0.001210) | 0.004725 / 0.004328 (0.000396) | 0.082006 / 0.004250 (0.077756) | 0.072164 / 0.037052 (0.035111) | 0.604489 / 0.258489 (0.346000) | 0.598520 / 0.293841 (0.304679) | 0.057534 / 0.128546 (-0.071013) | 0.016799 / 0.075646 (-0.058847) | 0.115029 / 0.419271 (-0.304243) | 0.070013 / 0.043533 (0.026481) | 0.561773 / 0.255139 (0.306634) | 0.624097 / 0.283200 (0.340897) | 0.043518 / 0.141683 (-0.098164) | 2.017089 / 1.452155 (0.564934) | 2.188159 / 1.492716 (0.695443) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.386476 / 0.018006 (0.368469) | 0.633195 / 0.000490 (0.632705) | 0.028469 / 0.000200 (0.028269) | 0.000159 / 0.000054 (0.000104) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.040020 / 0.037411 (0.002609) | 0.112927 / 0.014526 (0.098402) | 0.143663 / 0.176557 (-0.032894) | 0.205931 / 0.737135 (-0.531204) | 0.177814 / 0.296338 (-0.118524) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.711542 / 0.215209 (0.496333) | 7.518535 / 2.077655 (5.440880) | 3.714930 / 1.504120 (2.210810) | 3.031999 / 1.541195 (1.490804) | 3.328497 / 1.468490 (1.860006) | 0.858912 / 4.584777 (-3.725865) | 6.108384 / 3.745712 (2.362672) | 5.184329 / 5.269862 (-0.085532) | 3.622589 / 4.565676 (-0.943087) | 0.096933 / 0.424275 (-0.327342) | 0.008727 / 0.007607 (0.001120) | 0.830102 / 0.226044 (0.604057) | 8.331959 / 2.268929 (6.063030) | 4.165106 / 55.444624 (-51.279519) | 3.477003 / 6.876477 (-3.399474) | 3.794225 / 2.142072 (1.652153) | 1.237667 / 4.805227 (-3.567561) | 0.233731 / 6.500664 (-6.266933) | 0.076682 / 0.075469 (0.001213) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.944813 / 1.841788 (0.103026) | 27.666997 / 8.074308 (19.592689) | 24.562677 / 10.191392 (14.371285) | 0.279320 / 0.680424 (-0.401104) | 0.037802 / 0.534201 (-0.496399) | 0.553579 / 0.579283 (-0.025704) | 0.718229 / 0.434364 (0.283865) | 0.623456 / 0.540337 (0.083118) | 0.856777 / 1.386936 (-0.530159) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#4c2a9d31d5e720e85976af8b457d45755a7e6911 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007716 / 0.011353 (-0.003637) | 0.004624 / 0.011008 (-0.006384) | 0.099987 / 0.038508 (0.061479) | 0.082651 / 0.023109 (0.059542) | 0.376277 / 0.275898 (0.100379) | 0.401210 / 0.323480 (0.077730) | 0.004528 / 0.007986 (-0.003458) | 0.003763 / 0.004328 (-0.000566) | 0.076274 / 0.004250 (0.072024) | 0.062933 / 0.037052 (0.025881) | 0.393881 / 0.258489 (0.135392) | 0.431695 / 0.293841 (0.137854) | 0.036795 / 0.128546 (-0.091752) | 0.009935 / 0.075646 (-0.065712) | 0.343638 / 0.419271 (-0.075634) | 0.061456 / 0.043533 (0.017923) | 0.372235 / 0.255139 (0.117096) | 0.412994 / 0.283200 (0.129794) | 0.027993 / 0.141683 (-0.113690) | 1.798018 / 1.452155 (0.345863) | 1.898502 / 1.492716 (0.405786) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.237330 / 0.018006 (0.219324) | 0.494956 / 0.000490 (0.494467) | 0.003543 / 0.000200 (0.003343) | 0.000113 / 0.000054 (0.000059) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034084 / 0.037411 (-0.003327) | 0.093407 / 0.014526 (0.078881) | 0.108378 / 0.176557 (-0.068179) | 0.177016 / 0.737135 (-0.560119) | 0.108622 / 0.296338 (-0.187716) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.456449 / 0.215209 (0.241240) | 4.522405 / 2.077655 (2.444750) | 2.206564 / 1.504120 (0.702444) | 1.994185 / 1.541195 (0.452990) | 2.083785 / 1.468490 (0.615295) | 0.563352 / 4.584777 (-4.021425) | 4.207295 / 3.745712 (0.461583) | 3.783061 / 5.269862 (-1.486800) | 2.372874 / 4.565676 (-2.192802) | 0.066907 / 0.424275 (-0.357368) | 0.009013 / 0.007607 (0.001406) | 0.537852 / 0.226044 (0.311808) | 5.349928 / 2.268929 (3.081000) | 2.759409 / 55.444624 (-52.685215) | 2.345972 / 6.876477 (-4.530505) | 2.630559 / 2.142072 (0.488486) | 0.681134 / 4.805227 (-4.124093) | 0.157898 / 6.500664 (-6.342766) | 0.071638 / 0.075469 (-0.003831) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.470730 / 1.841788 (-0.371058) | 22.479252 / 8.074308 (14.404944) | 16.543080 / 10.191392 (6.351688) | 0.191943 / 0.680424 (-0.488481) | 0.021641 / 0.534201 (-0.512560) | 0.467571 / 0.579283 (-0.111712) | 0.486728 / 0.434364 (0.052364) | 0.543359 / 0.540337 (0.003021) | 0.733968 / 1.386936 (-0.652968) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008135 / 0.011353 (-0.003218) | 0.004662 / 0.011008 (-0.006347) | 0.077218 / 0.038508 (0.038710) | 0.092220 / 0.023109 (0.069111) | 0.481219 / 0.275898 (0.205321) | 0.530373 / 0.323480 (0.206893) | 0.006418 / 0.007986 (-0.001568) | 0.003924 / 0.004328 (-0.000404) | 0.076681 / 0.004250 (0.072431) | 0.068693 / 0.037052 (0.031641) | 0.491938 / 0.258489 (0.233449) | 0.540501 / 0.293841 (0.246660) | 0.038106 / 0.128546 (-0.090441) | 0.010035 / 0.075646 (-0.065611) | 0.084502 / 0.419271 (-0.334769) | 0.057234 / 0.043533 (0.013701) | 0.483239 / 0.255139 (0.228100) | 0.510026 / 0.283200 (0.226826) | 0.028770 / 0.141683 (-0.112913) | 1.854937 / 1.452155 (0.402783) | 1.948268 / 1.492716 (0.455552) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.380192 / 0.018006 (0.362186) | 0.523318 / 0.000490 (0.522828) | 0.051153 / 0.000200 (0.050953) | 0.000691 / 0.000054 (0.000637) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.036838 / 0.037411 (-0.000573) | 0.109202 / 0.014526 (0.094676) | 0.124110 / 0.176557 (-0.052446) | 0.186717 / 0.737135 (-0.550419) | 0.124088 / 0.296338 (-0.172250) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.506411 / 0.215209 (0.291202) | 5.045421 / 2.077655 (2.967766) | 2.711911 / 1.504120 (1.207791) | 2.531668 / 1.541195 (0.990474) | 2.635680 / 1.468490 (1.167190) | 0.578395 / 4.584777 (-4.006382) | 4.206891 / 3.745712 (0.461178) | 3.851063 / 5.269862 (-1.418799) | 2.388327 / 4.565676 (-2.177350) | 0.068041 / 0.424275 (-0.356234) | 0.008769 / 0.007607 (0.001162) | 0.594170 / 0.226044 (0.368125) | 5.953138 / 2.268929 (3.684210) | 3.290586 / 55.444624 (-52.154038) | 2.877086 / 6.876477 (-3.999390) | 3.138600 / 2.142072 (0.996528) | 0.686393 / 4.805227 (-4.118834) | 0.156541 / 6.500664 (-6.344123) | 0.071514 / 0.075469 (-0.003955) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.613514 / 1.841788 (-0.228274) | 23.593185 / 8.074308 (15.518877) | 17.146647 / 10.191392 (6.955255) | 0.177230 / 0.680424 (-0.503193) | 0.023661 / 0.534201 (-0.510540) | 0.472367 / 0.579283 (-0.106916) | 0.484614 / 0.434364 (0.050250) | 0.547150 / 0.540337 (0.006813) | 0.843726 / 1.386936 (-0.543210) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#dba64cd381bfe384cb64ab9826f6054a0f1df1ff \"CML watermark\")\n" ]
2023-08-25T13:12:19
2023-08-25T16:12:46
2023-08-25T16:02:24
CONTRIBUTOR
null
Reported on [Discord](https://discord.com/channels/879548962464493619/1144295822209581168/1144295822209581168)
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6181/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6181/timeline
null
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6181", "html_url": "https://github.com/huggingface/datasets/pull/6181", "diff_url": "https://github.com/huggingface/datasets/pull/6181.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6181.patch", "merged_at": "2023-08-25T16:02:24" }
true
https://api.github.com/repos/huggingface/datasets/issues/6180
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6180/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6180/comments
https://api.github.com/repos/huggingface/datasets/issues/6180/events
https://github.com/huggingface/datasets/pull/6180
1,867,032,578
PR_kwDODunzps5Yy1r-
6,180
Use `hf-internal-testing` repos for hosting test dataset repos
{ "login": "mariosasko", "id": 47462742, "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "gravatar_id": "", "url": "https://api.github.com/users/mariosasko", "html_url": "https://github.com/mariosasko", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "repos_url": "https://api.github.com/users/mariosasko/repos", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006505 / 0.011353 (-0.004847) | 0.003950 / 0.011008 (-0.007058) | 0.084554 / 0.038508 (0.046046) | 0.074376 / 0.023109 (0.051267) | 0.350184 / 0.275898 (0.074286) | 0.380704 / 0.323480 (0.057224) | 0.004011 / 0.007986 (-0.003975) | 0.003890 / 0.004328 (-0.000438) | 0.065483 / 0.004250 (0.061232) | 0.054912 / 0.037052 (0.017860) | 0.359586 / 0.258489 (0.101097) | 0.403360 / 0.293841 (0.109519) | 0.030614 / 0.128546 (-0.097932) | 0.008530 / 0.075646 (-0.067117) | 0.288220 / 0.419271 (-0.131052) | 0.052270 / 0.043533 (0.008737) | 0.352557 / 0.255139 (0.097418) | 0.380509 / 0.283200 (0.097309) | 0.025513 / 0.141683 (-0.116170) | 1.488469 / 1.452155 (0.036315) | 1.559182 / 1.492716 (0.066466) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.266163 / 0.018006 (0.248157) | 0.596345 / 0.000490 (0.595855) | 0.004368 / 0.000200 (0.004168) | 0.000211 / 0.000054 (0.000156) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027137 / 0.037411 (-0.010274) | 0.082251 / 0.014526 (0.067725) | 0.094745 / 0.176557 (-0.081812) | 0.148756 / 0.737135 (-0.588379) | 0.094580 / 0.296338 (-0.201758) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.383506 / 0.215209 (0.168297) | 3.823147 / 2.077655 (1.745493) | 1.859627 / 1.504120 (0.355507) | 1.687969 / 1.541195 (0.146775) | 1.720786 / 1.468490 (0.252296) | 0.476552 / 4.584777 (-4.108225) | 3.539558 / 3.745712 (-0.206154) | 3.209032 / 5.269862 (-2.060830) | 1.999643 / 4.565676 (-2.566034) | 0.056484 / 0.424275 (-0.367791) | 0.007443 / 0.007607 (-0.000164) | 0.456089 / 0.226044 (0.230044) | 4.562522 / 2.268929 (2.293593) | 2.348286 / 55.444624 (-53.096338) | 1.984323 / 6.876477 (-4.892154) | 2.148988 / 2.142072 (0.006915) | 0.570761 / 4.805227 (-4.234466) | 0.131439 / 6.500664 (-6.369225) | 0.059752 / 0.075469 (-0.015717) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.276803 / 1.841788 (-0.564985) | 19.406812 / 8.074308 (11.332504) | 13.979088 / 10.191392 (3.787696) | 0.157418 / 0.680424 (-0.523006) | 0.018051 / 0.534201 (-0.516150) | 0.392307 / 0.579283 (-0.186976) | 0.406603 / 0.434364 (-0.027760) | 0.458450 / 0.540337 (-0.081888) | 0.622569 / 1.386936 (-0.764367) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006552 / 0.011353 (-0.004800) | 0.004060 / 0.011008 (-0.006948) | 0.063522 / 0.038508 (0.025014) | 0.072537 / 0.023109 (0.049428) | 0.398452 / 0.275898 (0.122554) | 0.422059 / 0.323480 (0.098579) | 0.005577 / 0.007986 (-0.002409) | 0.003413 / 0.004328 (-0.000916) | 0.064095 / 0.004250 (0.059845) | 0.056883 / 0.037052 (0.019831) | 0.407119 / 0.258489 (0.148630) | 0.435889 / 0.293841 (0.142048) | 0.031549 / 0.128546 (-0.096998) | 0.008418 / 0.075646 (-0.067228) | 0.070315 / 0.419271 (-0.348957) | 0.047828 / 0.043533 (0.004295) | 0.398705 / 0.255139 (0.143566) | 0.416986 / 0.283200 (0.133786) | 0.022304 / 0.141683 (-0.119379) | 1.512597 / 1.452155 (0.060442) | 1.570588 / 1.492716 (0.077871) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.295100 / 0.018006 (0.277094) | 0.541883 / 0.000490 (0.541393) | 0.007375 / 0.000200 (0.007175) | 0.000100 / 0.000054 (0.000045) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030877 / 0.037411 (-0.006534) | 0.090807 / 0.014526 (0.076281) | 0.106155 / 0.176557 (-0.070402) | 0.155546 / 0.737135 (-0.581589) | 0.103847 / 0.296338 (-0.192492) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.441176 / 0.215209 (0.225967) | 4.401025 / 2.077655 (2.323371) | 2.394764 / 1.504120 (0.890644) | 2.226434 / 1.541195 (0.685239) | 2.247248 / 1.468490 (0.778758) | 0.489149 / 4.584777 (-4.095628) | 3.642468 / 3.745712 (-0.103244) | 3.235597 / 5.269862 (-2.034265) | 1.992660 / 4.565676 (-2.573016) | 0.057457 / 0.424275 (-0.366818) | 0.007192 / 0.007607 (-0.000415) | 0.515978 / 0.226044 (0.289934) | 5.147728 / 2.268929 (2.878800) | 2.837394 / 55.444624 (-52.607230) | 2.505753 / 6.876477 (-4.370723) | 2.653090 / 2.142072 (0.511018) | 0.583274 / 4.805227 (-4.221954) | 0.132116 / 6.500664 (-6.368548) | 0.058794 / 0.075469 (-0.016675) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.331630 / 1.841788 (-0.510158) | 20.056890 / 8.074308 (11.982582) | 14.950561 / 10.191392 (4.759169) | 0.165449 / 0.680424 (-0.514975) | 0.020161 / 0.534201 (-0.514040) | 0.395791 / 0.579283 (-0.183492) | 0.415631 / 0.434364 (-0.018733) | 0.474440 / 0.540337 (-0.065898) | 0.643060 / 1.386936 (-0.743876) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#712185ed5e9cb3ff6d6528b4528882d51935f334 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007440 / 0.011353 (-0.003913) | 0.004456 / 0.011008 (-0.006552) | 0.099498 / 0.038508 (0.060990) | 0.077579 / 0.023109 (0.054470) | 0.374934 / 0.275898 (0.099036) | 0.409590 / 0.323480 (0.086110) | 0.005876 / 0.007986 (-0.002110) | 0.003642 / 0.004328 (-0.000687) | 0.076781 / 0.004250 (0.072531) | 0.060185 / 0.037052 (0.023133) | 0.374762 / 0.258489 (0.116273) | 0.445608 / 0.293841 (0.151767) | 0.036557 / 0.128546 (-0.091990) | 0.009941 / 0.075646 (-0.065706) | 0.345214 / 0.419271 (-0.074058) | 0.061912 / 0.043533 (0.018379) | 0.378346 / 0.255139 (0.123207) | 0.415275 / 0.283200 (0.132076) | 0.027396 / 0.141683 (-0.114287) | 1.776602 / 1.452155 (0.324447) | 1.827683 / 1.492716 (0.334967) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.235227 / 0.018006 (0.217221) | 0.491846 / 0.000490 (0.491356) | 0.004987 / 0.000200 (0.004787) | 0.000127 / 0.000054 (0.000073) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032517 / 0.037411 (-0.004894) | 0.099217 / 0.014526 (0.084691) | 0.109749 / 0.176557 (-0.066807) | 0.176190 / 0.737135 (-0.560946) | 0.109868 / 0.296338 (-0.186471) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.455188 / 0.215209 (0.239979) | 4.560143 / 2.077655 (2.482489) | 2.249928 / 1.504120 (0.745809) | 2.032808 / 1.541195 (0.491614) | 2.090096 / 1.468490 (0.621605) | 0.567813 / 4.584777 (-4.016964) | 4.338299 / 3.745712 (0.592587) | 3.701589 / 5.269862 (-1.568273) | 2.404805 / 4.565676 (-2.160871) | 0.067931 / 0.424275 (-0.356344) | 0.009011 / 0.007607 (0.001404) | 0.542565 / 0.226044 (0.316521) | 5.406578 / 2.268929 (3.137650) | 2.773508 / 55.444624 (-52.671116) | 2.402926 / 6.876477 (-4.473550) | 2.679318 / 2.142072 (0.537246) | 0.683781 / 4.805227 (-4.121446) | 0.155970 / 6.500664 (-6.344694) | 0.070108 / 0.075469 (-0.005361) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.541583 / 1.841788 (-0.300205) | 21.592562 / 8.074308 (13.518254) | 16.426868 / 10.191392 (6.235476) | 0.168618 / 0.680424 (-0.511806) | 0.021560 / 0.534201 (-0.512641) | 0.467062 / 0.579283 (-0.112221) | 0.479968 / 0.434364 (0.045604) | 0.540747 / 0.540337 (0.000410) | 0.775502 / 1.386936 (-0.611434) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008632 / 0.011353 (-0.002721) | 0.004523 / 0.011008 (-0.006485) | 0.075814 / 0.038508 (0.037306) | 0.087096 / 0.023109 (0.063987) | 0.482136 / 0.275898 (0.206238) | 0.529969 / 0.323480 (0.206489) | 0.006882 / 0.007986 (-0.001103) | 0.003720 / 0.004328 (-0.000609) | 0.076232 / 0.004250 (0.071981) | 0.069307 / 0.037052 (0.032254) | 0.491554 / 0.258489 (0.233065) | 0.528989 / 0.293841 (0.235148) | 0.042219 / 0.128546 (-0.086327) | 0.009717 / 0.075646 (-0.065929) | 0.103006 / 0.419271 (-0.316266) | 0.060377 / 0.043533 (0.016844) | 0.484454 / 0.255139 (0.229315) | 0.536072 / 0.283200 (0.252872) | 0.027482 / 0.141683 (-0.114201) | 1.844677 / 1.452155 (0.392522) | 2.001800 / 1.492716 (0.509083) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.252367 / 0.018006 (0.234361) | 0.483601 / 0.000490 (0.483111) | 0.007445 / 0.000200 (0.007245) | 0.000163 / 0.000054 (0.000108) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.036463 / 0.037411 (-0.000948) | 0.108837 / 0.014526 (0.094311) | 0.122256 / 0.176557 (-0.054300) | 0.186455 / 0.737135 (-0.550681) | 0.122270 / 0.296338 (-0.174069) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.506291 / 0.215209 (0.291082) | 5.038044 / 2.077655 (2.960389) | 2.751017 / 1.504120 (1.246897) | 2.553655 / 1.541195 (1.012460) | 2.612724 / 1.468490 (1.144234) | 0.581755 / 4.584777 (-4.003022) | 4.376012 / 3.745712 (0.630300) | 3.749755 / 5.269862 (-1.520107) | 2.394059 / 4.565676 (-2.171618) | 0.068727 / 0.424275 (-0.355548) | 0.008714 / 0.007607 (0.001107) | 0.607371 / 0.226044 (0.381326) | 6.062053 / 2.268929 (3.793125) | 3.278378 / 55.444624 (-52.166247) | 2.866417 / 6.876477 (-4.010060) | 3.056150 / 2.142072 (0.914077) | 0.695090 / 4.805227 (-4.110137) | 0.155274 / 6.500664 (-6.345390) | 0.071106 / 0.075469 (-0.004363) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.584552 / 1.841788 (-0.257236) | 23.092569 / 8.074308 (15.018260) | 17.381905 / 10.191392 (7.190513) | 0.206535 / 0.680424 (-0.473888) | 0.025401 / 0.534201 (-0.508800) | 0.514297 / 0.579283 (-0.064986) | 0.507487 / 0.434364 (0.073123) | 0.566883 / 0.540337 (0.026545) | 0.811074 / 1.386936 (-0.575862) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#5fb01295bff860f09a4c466e745f3840f851efdc \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008400 / 0.011353 (-0.002953) | 0.004872 / 0.011008 (-0.006136) | 0.104434 / 0.038508 (0.065926) | 0.074411 / 0.023109 (0.051302) | 0.395970 / 0.275898 (0.120072) | 0.431661 / 0.323480 (0.108181) | 0.005365 / 0.007986 (-0.002621) | 0.005495 / 0.004328 (0.001167) | 0.081255 / 0.004250 (0.077004) | 0.057141 / 0.037052 (0.020089) | 0.397242 / 0.258489 (0.138753) | 0.456052 / 0.293841 (0.162211) | 0.048362 / 0.128546 (-0.080184) | 0.014077 / 0.075646 (-0.061569) | 0.351128 / 0.419271 (-0.068143) | 0.067842 / 0.043533 (0.024309) | 0.372820 / 0.255139 (0.117681) | 0.407917 / 0.283200 (0.124717) | 0.037707 / 0.141683 (-0.103976) | 1.677136 / 1.452155 (0.224981) | 1.764614 / 1.492716 (0.271897) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.269850 / 0.018006 (0.251844) | 0.601458 / 0.000490 (0.600969) | 0.006500 / 0.000200 (0.006300) | 0.000107 / 0.000054 (0.000053) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030340 / 0.037411 (-0.007072) | 0.098041 / 0.014526 (0.083515) | 0.107270 / 0.176557 (-0.069287) | 0.173502 / 0.737135 (-0.563633) | 0.113296 / 0.296338 (-0.183043) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.575788 / 0.215209 (0.360579) | 5.723878 / 2.077655 (3.646223) | 2.326339 / 1.504120 (0.822219) | 2.130667 / 1.541195 (0.589472) | 2.080885 / 1.468490 (0.612395) | 0.800936 / 4.584777 (-3.783841) | 5.227888 / 3.745712 (1.482176) | 4.592647 / 5.269862 (-0.677214) | 2.935765 / 4.565676 (-1.629911) | 0.095909 / 0.424275 (-0.328367) | 0.008763 / 0.007607 (0.001156) | 0.697362 / 0.226044 (0.471318) | 6.968105 / 2.268929 (4.699176) | 3.129070 / 55.444624 (-52.315554) | 2.554818 / 6.876477 (-4.321658) | 2.776005 / 2.142072 (0.633933) | 1.017064 / 4.805227 (-3.788163) | 0.211552 / 6.500664 (-6.289112) | 0.072132 / 0.075469 (-0.003338) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.517072 / 1.841788 (-0.324716) | 23.737742 / 8.074308 (15.663433) | 22.236447 / 10.191392 (12.045055) | 0.235408 / 0.680424 (-0.445016) | 0.031889 / 0.534201 (-0.502312) | 0.458997 / 0.579283 (-0.120286) | 0.610513 / 0.434364 (0.176149) | 0.536508 / 0.540337 (-0.003830) | 0.750137 / 1.386936 (-0.636799) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008696 / 0.011353 (-0.002657) | 0.005374 / 0.011008 (-0.005634) | 0.077974 / 0.038508 (0.039466) | 0.083471 / 0.023109 (0.060362) | 0.498890 / 0.275898 (0.222992) | 0.517570 / 0.323480 (0.194090) | 0.006523 / 0.007986 (-0.001462) | 0.004315 / 0.004328 (-0.000013) | 0.082262 / 0.004250 (0.078012) | 0.064828 / 0.037052 (0.027776) | 0.473101 / 0.258489 (0.214612) | 0.534172 / 0.293841 (0.240331) | 0.051884 / 0.128546 (-0.076662) | 0.015191 / 0.075646 (-0.060455) | 0.084307 / 0.419271 (-0.334965) | 0.066050 / 0.043533 (0.022517) | 0.518007 / 0.255139 (0.262868) | 0.511145 / 0.283200 (0.227946) | 0.045302 / 0.141683 (-0.096381) | 1.670973 / 1.452155 (0.218818) | 1.829225 / 1.492716 (0.336509) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.436537 / 0.018006 (0.418531) | 0.608380 / 0.000490 (0.607890) | 0.075211 / 0.000200 (0.075011) | 0.000733 / 0.000054 (0.000679) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.039117 / 0.037411 (0.001706) | 0.103525 / 0.014526 (0.088999) | 0.124413 / 0.176557 (-0.052144) | 0.192352 / 0.737135 (-0.544783) | 0.120379 / 0.296338 (-0.175959) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.673338 / 0.215209 (0.458129) | 6.799435 / 2.077655 (4.721780) | 3.600913 / 1.504120 (2.096793) | 2.881008 / 1.541195 (1.339814) | 2.667154 / 1.468490 (1.198664) | 0.868775 / 4.584777 (-3.716002) | 5.517063 / 3.745712 (1.771351) | 4.646706 / 5.269862 (-0.623156) | 2.914825 / 4.565676 (-1.650852) | 0.098784 / 0.424275 (-0.325491) | 0.011504 / 0.007607 (0.003897) | 0.724233 / 0.226044 (0.498188) | 7.311045 / 2.268929 (5.042117) | 3.685490 / 55.444624 (-51.759135) | 2.892360 / 6.876477 (-3.984117) | 3.253189 / 2.142072 (1.111117) | 0.983065 / 4.805227 (-3.822162) | 0.201097 / 6.500664 (-6.299567) | 0.068020 / 0.075469 (-0.007450) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.793904 / 1.841788 (-0.047884) | 24.451356 / 8.074308 (16.377048) | 21.697191 / 10.191392 (11.505799) | 0.228545 / 0.680424 (-0.451879) | 0.034600 / 0.534201 (-0.499601) | 0.483253 / 0.579283 (-0.096030) | 0.615103 / 0.434364 (0.180739) | 0.564600 / 0.540337 (0.024262) | 0.799688 / 1.386936 (-0.587248) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#74d60213dcbd7c99484c62ce1d3dfd90a1df0770 \"CML watermark\")\n" ]
2023-08-25T13:10:26
2023-08-25T16:58:02
2023-08-25T16:46:22
CONTRIBUTOR
null
Use `hf-internal-testing` for hosting instead of the maintainers' dataset repos.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6180/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6180/timeline
null
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6180", "html_url": "https://github.com/huggingface/datasets/pull/6180", "diff_url": "https://github.com/huggingface/datasets/pull/6180.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6180.patch", "merged_at": "2023-08-25T16:46:22" }
true
https://api.github.com/repos/huggingface/datasets/issues/6179
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6179/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6179/comments
https://api.github.com/repos/huggingface/datasets/issues/6179/events
https://github.com/huggingface/datasets/issues/6179
1,867,009,016
I_kwDODunzps5vSEv4
6,179
Map cache with tokenizer
{ "login": "jonathanasdf", "id": 511073, "node_id": "MDQ6VXNlcjUxMTA3Mw==", "avatar_url": "https://avatars.githubusercontent.com/u/511073?v=4", "gravatar_id": "", "url": "https://api.github.com/users/jonathanasdf", "html_url": "https://github.com/jonathanasdf", "followers_url": "https://api.github.com/users/jonathanasdf/followers", "following_url": "https://api.github.com/users/jonathanasdf/following{/other_user}", "gists_url": "https://api.github.com/users/jonathanasdf/gists{/gist_id}", "starred_url": "https://api.github.com/users/jonathanasdf/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jonathanasdf/subscriptions", "organizations_url": "https://api.github.com/users/jonathanasdf/orgs", "repos_url": "https://api.github.com/users/jonathanasdf/repos", "events_url": "https://api.github.com/users/jonathanasdf/events{/privacy}", "received_events_url": "https://api.github.com/users/jonathanasdf/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "https://github.com/huggingface/datasets/issues/5147 may be a solution, by passing in the tokenizer in a fn_kwargs and ignoring it in the fingerprint calculations", "I have a similar issue. I was using a Jupyter Notebook and every time I call the map function it performs tokenization from scratch again although the cache files of last run still exists. \r\n\r\nI ran with 20 processes and now in the cache folder there are two groups of cached results of tokenized dataset:\r\n\r\n```\r\n.rw-r--r-- fad3ew bii_dsc_community 240 MB Sat Aug 26 12:56:46 2023 cache-1982fea76aa54a13_00001_of_00020.arrow\r\n.rw-r--r-- fad3ew bii_dsc_community 240 MB Sat Aug 26 13:02:08 2023 cache-1982fea76aa54a13_00004_of_00020.arrow\r\n.rw-r--r-- fad3ew bii_dsc_community 240 MB Sat Aug 26 12:56:40 2023 cache-1982fea76aa54a13_00005_of_00020.arrow\r\n.rw-r--r-- fad3ew bii_dsc_community 241 MB Sat Aug 26 12:50:59 2023 cache-1982fea76aa54a13_00006_of_00020.arrow\r\n.rw-r--r-- fad3ew bii_dsc_community 240 MB Sat Aug 26 12:57:37 2023 cache-1982fea76aa54a13_00007_of_00020.arrow\r\n.rw-r--r-- fad3ew bii_dsc_community 240 MB Sat Aug 26 12:57:31 2023 cache-1982fea76aa54a13_00008_of_00020.arrow\r\n.rw-r--r-- fad3ew bii_dsc_community 240 MB Sat Aug 26 12:59:47 2023 cache-1982fea76aa54a13_00010_of_00020.arrow\r\n.rw-r--r-- fad3ew bii_dsc_community 241 MB Sat Aug 26 12:59:44 2023 cache-1982fea76aa54a13_00011_of_00020.arrow\r\n.rw-r--r-- fad3ew bii_dsc_community 241 MB Sat Aug 26 12:55:24 2023 cache-1982fea76aa54a13_00012_of_00020.arrow\r\n.rw-r--r-- fad3ew bii_dsc_community 241 MB Sat Aug 26 12:56:21 2023 cache-1982fea76aa54a13_00013_of_00020.arrow\r\n.rw-r--r-- fad3ew bii_dsc_community 240 MB Sat Aug 26 12:57:24 2023 cache-1982fea76aa54a13_00014_of_00020.arrow\r\n.rw-r--r-- fad3ew bii_dsc_community 240 MB Sat Aug 26 13:00:48 2023 cache-1982fea76aa54a13_00015_of_00020.arrow\r\n.rw-r--r-- fad3ew bii_dsc_community 240 MB Sat Aug 26 12:56:56 2023 cache-1982fea76aa54a13_00017_of_00020.arrow\r\n.rw-r--r-- fad3ew bii_dsc_community 240 MB Sat Aug 26 12:56:54 2023 cache-1982fea76aa54a13_00018_of_00020.arrow\r\n.rw-r--r-- fad3ew bii_dsc_community 240 MB Sat Aug 26 12:57:27 2023 cache-1982fea76aa54a13_00019_of_00020.arrow\r\n.rw-r--r-- fad3ew bii_dsc_community 240 MB Wed Aug 23 19:15:40 2023 cache-454431f643cdc5e8_00000_of_00020.arrow\r\n.rw-r--r-- fad3ew bii_dsc_community 240 MB Wed Aug 23 19:16:46 2023 cache-454431f643cdc5e8_00001_of_00020.arrow\r\n.rw-r--r-- fad3ew bii_dsc_community 240 MB Wed Aug 23 19:14:53 2023 cache-454431f643cdc5e8_00002_of_00020.arrow\r\n.rw-r--r-- fad3ew bii_dsc_community 240 MB Wed Aug 23 19:13:10 2023 cache-454431f643cdc5e8_00003_of_00020.arrow\r\n.rw-r--r-- fad3ew bii_dsc_community 240 MB Wed Aug 23 19:13:04 2023 cache-454431f643cdc5e8_00004_of_00020.arrow\r\n.rw-r--r-- fad3ew bii_dsc_community 240 MB Wed Aug 23 19:16:42 2023 cache-454431f643cdc5e8_00005_of_00020.arrow\r\n.rw-r--r-- fad3ew bii_dsc_community 241 MB Wed Aug 23 19:01:29 2023 cache-454431f643cdc5e8_00006_of_00020.arrow\r\n.rw-r--r-- fad3ew bii_dsc_community 240 MB Wed Aug 23 19:16:41 2023 cache-454431f643cdc5e8_00007_of_00020.arrow\r\n.rw-r--r-- fad3ew bii_dsc_community 240 MB Wed Aug 23 19:14:04 2023 cache-454431f643cdc5e8_00008_of_00020.arrow\r\n.rw-r--r-- fad3ew bii_dsc_community 240 MB Wed Aug 23 19:17:41 2023 cache-454431f643cdc5e8_00009_of_00020.arrow\r\n.rw-r--r-- fad3ew bii_dsc_community 240 MB Wed Aug 23 19:17:06 2023 cache-454431f643cdc5e8_00010_of_00020.arrow\r\n.rw-r--r-- fad3ew bii_dsc_community 241 MB Wed Aug 23 19:17:16 2023 cache-454431f643cdc5e8_00011_of_00020.arrow\r\n.rw-r--r-- fad3ew bii_dsc_community 241 MB Wed Aug 23 19:15:13 2023 cache-454431f643cdc5e8_00012_of_00020.arrow\r\n.rw-r--r-- fad3ew bii_dsc_community 241 MB Wed Aug 23 19:16:01 2023 cache-454431f643cdc5e8_00013_of_00020.arrow\r\n.rw-r--r-- fad3ew bii_dsc_community 240 MB Wed Aug 23 19:16:35 2023 cache-454431f643cdc5e8_00014_of_00020.arrow\r\n.rw-r--r-- fad3ew bii_dsc_community 240 MB Wed Aug 23 19:16:20 2023 cache-454431f643cdc5e8_00015_of_00020.arrow\r\n.rw-r--r-- fad3ew bii_dsc_community 240 MB Wed Aug 23 19:14:48 2023 cache-454431f643cdc5e8_00016_of_00020.arrow\r\n.rw-r--r-- fad3ew bii_dsc_community 240 MB Wed Aug 23 18:59:32 2023 cache-454431f643cdc5e8_00017_of_00020.arrow\r\n.rw-r--r-- fad3ew bii_dsc_community 240 MB Wed Aug 23 19:17:58 2023 cache-454431f643cdc5e8_00018_of_00020.arrow\r\n.rw-r--r-- fad3ew bii_dsc_community 240 MB Wed Aug 23 19:15:25 2023 cache-454431f643cdc5e8_00019_of_00020.arrow\r\n```\r\n\r\ncan we specify the cache file for map so that it won't redo everything again?", "@Luosuu [map](https://huggingface.co/docs/datasets/v2.14.4/en/package_reference/main_classes#datasets.Dataset.map) has cache_file_name parameter\r\n\r\nIn my case, I do want the cache to detect when the map function changes, so I can't pass a constant cache file name." ]
2023-08-25T12:55:18
2023-08-26T22:08:07
null
NONE
null
Similar issue to https://github.com/huggingface/datasets/issues/5985, but across different sessions rather than two calls in the same session. Unlike that issue, explicitly calling tokenizer(my_args) before the map() doesn't help, because the tokenizer was created with a different hash to begin with... setup ``` from transformers import AutoTokenizer AutoTokenizer.from_pretrained('bert-base-uncased').save_pretrained("tok") ``` this prints different value each time ``` from transformers import AutoTokenizer from datasets.utils.py_utils import dumps # Huggingface datasets print(hash(dumps(AutoTokenizer.from_pretrained("tok")))) ```
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6179/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6179/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6178
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6178/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6178/comments
https://api.github.com/repos/huggingface/datasets/issues/6178/events
https://github.com/huggingface/datasets/issues/6178
1,866,610,102
I_kwDODunzps5vQjW2
6,178
'import datasets' throws "invalid syntax error"
{ "login": "elia-ashraf", "id": 128580829, "node_id": "U_kgDOB6n83Q", "avatar_url": "https://avatars.githubusercontent.com/u/128580829?v=4", "gravatar_id": "", "url": "https://api.github.com/users/elia-ashraf", "html_url": "https://github.com/elia-ashraf", "followers_url": "https://api.github.com/users/elia-ashraf/followers", "following_url": "https://api.github.com/users/elia-ashraf/following{/other_user}", "gists_url": "https://api.github.com/users/elia-ashraf/gists{/gist_id}", "starred_url": "https://api.github.com/users/elia-ashraf/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/elia-ashraf/subscriptions", "organizations_url": "https://api.github.com/users/elia-ashraf/orgs", "repos_url": "https://api.github.com/users/elia-ashraf/repos", "events_url": "https://api.github.com/users/elia-ashraf/events{/privacy}", "received_events_url": "https://api.github.com/users/elia-ashraf/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "This seems to be related to your environment and not the `datasets` code (e.g., this could happen when exposing the Python 3.9 site packages to a lower Python version (interpreter))" ]
2023-08-25T08:35:14
2023-08-29T14:57:17
null
NONE
null
### Describe the bug Hi, I have been trying to import the datasets library but I keep gtting this error. `Traceback (most recent call last): File /opt/local/jupyterhub/lib64/python3.9/site-packages/IPython/core/interactiveshell.py:3508 in run_code exec(code_obj, self.user_global_ns, self.user_ns) Cell In[2], line 1 import datasets File /opt/local/jupyterhub/lib64/python3.9/site-packages/datasets/__init__.py:22 from .arrow_dataset import Dataset File /opt/local/jupyterhub/lib64/python3.9/site-packages/datasets/arrow_dataset.py:67 from .arrow_writer import ArrowWriter, OptimizedTypedSequence File /opt/local/jupyterhub/lib64/python3.9/site-packages/datasets/arrow_writer.py:27 from .features import Features, Image, Value File /opt/local/jupyterhub/lib64/python3.9/site-packages/datasets/features/__init__.py:17 from .audio import Audio File /opt/local/jupyterhub/lib64/python3.9/site-packages/datasets/features/audio.py:11 from ..download.streaming_download_manager import xopen, xsplitext File /opt/local/jupyterhub/lib64/python3.9/site-packages/datasets/download/__init__.py:10 from .streaming_download_manager import StreamingDownloadManager File /opt/local/jupyterhub/lib64/python3.9/site-packages/datasets/download/streaming_download_manager.py:18 from aiohttp.client_exceptions import ClientError File /opt/local/jupyterhub/lib64/python3.9/site-packages/aiohttp/__init__.py:7 from .connector import * # noqa File /opt/local/jupyterhub/lib64/python3.9/site-packages/aiohttp/connector.py:12 from .client import ClientRequest File /opt/local/jupyterhub/lib64/python3.9/site-packages/aiohttp/client.py:144 yield from asyncio.async(resp.release(), loop=loop) ^ SyntaxError: invalid syntax` I have simply used these commands: `import datasets` and `from datasets import load_dataset` ### Environment info The library has been installed a virtual machine on JupyterHub. Although I have used this library multiple times (on the same VM) before, to train/test an ASR or other ML models, I had never encountered this error.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6178/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6178/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6177
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6177/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6177/comments
https://api.github.com/repos/huggingface/datasets/issues/6177/events
https://github.com/huggingface/datasets/pull/6177
1,865,490,962
PR_kwDODunzps5Ytky-
6,177
Use object detection images from `huggingface/documentation-images`
{ "login": "mariosasko", "id": 47462742, "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "gravatar_id": "", "url": "https://api.github.com/users/mariosasko", "html_url": "https://github.com/mariosasko", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "repos_url": "https://api.github.com/users/mariosasko/repos", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005847 / 0.011353 (-0.005506) | 0.003488 / 0.011008 (-0.007521) | 0.079545 / 0.038508 (0.041037) | 0.055114 / 0.023109 (0.032005) | 0.312694 / 0.275898 (0.036796) | 0.338808 / 0.323480 (0.015329) | 0.004573 / 0.007986 (-0.003413) | 0.002818 / 0.004328 (-0.001510) | 0.062102 / 0.004250 (0.057852) | 0.044072 / 0.037052 (0.007019) | 0.317682 / 0.258489 (0.059192) | 0.354139 / 0.293841 (0.060298) | 0.026905 / 0.128546 (-0.101641) | 0.007990 / 0.075646 (-0.067656) | 0.260071 / 0.419271 (-0.159201) | 0.043658 / 0.043533 (0.000125) | 0.313828 / 0.255139 (0.058689) | 0.339678 / 0.283200 (0.056478) | 0.020076 / 0.141683 (-0.121607) | 1.446321 / 1.452155 (-0.005834) | 1.527046 / 1.492716 (0.034330) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.197801 / 0.018006 (0.179795) | 0.432874 / 0.000490 (0.432385) | 0.004093 / 0.000200 (0.003893) | 0.000069 / 0.000054 (0.000014) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023505 / 0.037411 (-0.013906) | 0.072377 / 0.014526 (0.057852) | 0.081058 / 0.176557 (-0.095498) | 0.141628 / 0.737135 (-0.595507) | 0.081622 / 0.296338 (-0.214716) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.395005 / 0.215209 (0.179795) | 3.949006 / 2.077655 (1.871352) | 1.934028 / 1.504120 (0.429908) | 1.756065 / 1.541195 (0.214871) | 1.778719 / 1.468490 (0.310229) | 0.501279 / 4.584777 (-4.083498) | 3.032120 / 3.745712 (-0.713592) | 2.859751 / 5.269862 (-2.410110) | 1.885924 / 4.565676 (-2.679753) | 0.057236 / 0.424275 (-0.367039) | 0.006704 / 0.007607 (-0.000903) | 0.465794 / 0.226044 (0.239750) | 4.648622 / 2.268929 (2.379694) | 2.345649 / 55.444624 (-53.098975) | 1.981122 / 6.876477 (-4.895355) | 2.148235 / 2.142072 (0.006163) | 0.591466 / 4.805227 (-4.213761) | 0.125262 / 6.500664 (-6.375402) | 0.061305 / 0.075469 (-0.014164) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.243932 / 1.841788 (-0.597856) | 17.912110 / 8.074308 (9.837802) | 13.662097 / 10.191392 (3.470705) | 0.148051 / 0.680424 (-0.532373) | 0.016778 / 0.534201 (-0.517423) | 0.340342 / 0.579283 (-0.238941) | 0.351720 / 0.434364 (-0.082644) | 0.377837 / 0.540337 (-0.162501) | 0.521163 / 1.386936 (-0.865774) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006011 / 0.011353 (-0.005342) | 0.003549 / 0.011008 (-0.007459) | 0.063579 / 0.038508 (0.025071) | 0.056196 / 0.023109 (0.033087) | 0.448879 / 0.275898 (0.172981) | 0.491542 / 0.323480 (0.168062) | 0.004597 / 0.007986 (-0.003389) | 0.002790 / 0.004328 (-0.001539) | 0.063257 / 0.004250 (0.059006) | 0.045653 / 0.037052 (0.008600) | 0.459714 / 0.258489 (0.201225) | 0.491371 / 0.293841 (0.197530) | 0.028124 / 0.128546 (-0.100422) | 0.008016 / 0.075646 (-0.067630) | 0.069418 / 0.419271 (-0.349853) | 0.040393 / 0.043533 (-0.003140) | 0.450978 / 0.255139 (0.195839) | 0.472075 / 0.283200 (0.188875) | 0.020006 / 0.141683 (-0.121677) | 1.451946 / 1.452155 (-0.000209) | 1.513557 / 1.492716 (0.020840) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.225416 / 0.018006 (0.207410) | 0.412287 / 0.000490 (0.411797) | 0.004075 / 0.000200 (0.003875) | 0.000073 / 0.000054 (0.000019) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025949 / 0.037411 (-0.011463) | 0.080633 / 0.014526 (0.066108) | 0.089960 / 0.176557 (-0.086597) | 0.144530 / 0.737135 (-0.592606) | 0.091427 / 0.296338 (-0.204911) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.462311 / 0.215209 (0.247102) | 4.605063 / 2.077655 (2.527408) | 2.541083 / 1.504120 (1.036963) | 2.356341 / 1.541195 (0.815147) | 2.389824 / 1.468490 (0.921334) | 0.507397 / 4.584777 (-4.077380) | 3.079023 / 3.745712 (-0.666689) | 2.792025 / 5.269862 (-2.477837) | 1.846931 / 4.565676 (-2.718746) | 0.058422 / 0.424275 (-0.365853) | 0.006409 / 0.007607 (-0.001199) | 0.530648 / 0.226044 (0.304604) | 5.321030 / 2.268929 (3.052101) | 2.978335 / 55.444624 (-52.466289) | 2.641188 / 6.876477 (-4.235288) | 2.780450 / 2.142072 (0.638378) | 0.593864 / 4.805227 (-4.211363) | 0.125394 / 6.500664 (-6.375270) | 0.061432 / 0.075469 (-0.014037) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.337142 / 1.841788 (-0.504646) | 18.841575 / 8.074308 (10.767267) | 14.678622 / 10.191392 (4.487230) | 0.144491 / 0.680424 (-0.535933) | 0.018145 / 0.534201 (-0.516056) | 0.339376 / 0.579283 (-0.239907) | 0.339129 / 0.434364 (-0.095235) | 0.394842 / 0.540337 (-0.145495) | 0.547924 / 1.386936 (-0.839012) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#57af0ab30796df59d28bf933e756ffbe5f34db1e \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006478 / 0.011353 (-0.004875) | 0.003845 / 0.011008 (-0.007163) | 0.084179 / 0.038508 (0.045671) | 0.071327 / 0.023109 (0.048217) | 0.315206 / 0.275898 (0.039308) | 0.353477 / 0.323480 (0.029997) | 0.005267 / 0.007986 (-0.002719) | 0.003282 / 0.004328 (-0.001046) | 0.064062 / 0.004250 (0.059811) | 0.051940 / 0.037052 (0.014888) | 0.332004 / 0.258489 (0.073515) | 0.363199 / 0.293841 (0.069358) | 0.030546 / 0.128546 (-0.098000) | 0.008453 / 0.075646 (-0.067193) | 0.287636 / 0.419271 (-0.131636) | 0.051999 / 0.043533 (0.008466) | 0.325220 / 0.255139 (0.070081) | 0.355324 / 0.283200 (0.072125) | 0.023417 / 0.141683 (-0.118266) | 1.473370 / 1.452155 (0.021215) | 1.596903 / 1.492716 (0.104186) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.212645 / 0.018006 (0.194638) | 0.463766 / 0.000490 (0.463276) | 0.002834 / 0.000200 (0.002634) | 0.000079 / 0.000054 (0.000024) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028424 / 0.037411 (-0.008987) | 0.082188 / 0.014526 (0.067662) | 0.777186 / 0.176557 (0.600629) | 0.218290 / 0.737135 (-0.518845) | 0.099098 / 0.296338 (-0.197240) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.387138 / 0.215209 (0.171929) | 3.845655 / 2.077655 (1.768000) | 1.929812 / 1.504120 (0.425692) | 1.718263 / 1.541195 (0.177069) | 1.760933 / 1.468490 (0.292443) | 0.475171 / 4.584777 (-4.109606) | 3.523366 / 3.745712 (-0.222346) | 3.167322 / 5.269862 (-2.102540) | 1.975164 / 4.565676 (-2.590513) | 0.056106 / 0.424275 (-0.368169) | 0.007448 / 0.007607 (-0.000159) | 0.459824 / 0.226044 (0.233779) | 4.590566 / 2.268929 (2.321638) | 2.377968 / 55.444624 (-53.066656) | 2.034052 / 6.876477 (-4.842425) | 2.224976 / 2.142072 (0.082904) | 0.575901 / 4.805227 (-4.229326) | 0.131546 / 6.500664 (-6.369118) | 0.059266 / 0.075469 (-0.016203) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.254783 / 1.841788 (-0.587005) | 19.497795 / 8.074308 (11.423487) | 13.937672 / 10.191392 (3.746280) | 0.164092 / 0.680424 (-0.516332) | 0.017915 / 0.534201 (-0.516286) | 0.391430 / 0.579283 (-0.187853) | 0.403681 / 0.434364 (-0.030683) | 0.457711 / 0.540337 (-0.082626) | 0.620395 / 1.386936 (-0.766541) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006793 / 0.011353 (-0.004560) | 0.004101 / 0.011008 (-0.006907) | 0.064780 / 0.038508 (0.026272) | 0.071087 / 0.023109 (0.047977) | 0.401963 / 0.275898 (0.126065) | 0.433085 / 0.323480 (0.109605) | 0.005348 / 0.007986 (-0.002638) | 0.003289 / 0.004328 (-0.001039) | 0.065209 / 0.004250 (0.060958) | 0.054202 / 0.037052 (0.017150) | 0.405629 / 0.258489 (0.147140) | 0.440326 / 0.293841 (0.146485) | 0.032283 / 0.128546 (-0.096263) | 0.008510 / 0.075646 (-0.067137) | 0.071144 / 0.419271 (-0.348127) | 0.047414 / 0.043533 (0.003881) | 0.402065 / 0.255139 (0.146926) | 0.421217 / 0.283200 (0.138017) | 0.021924 / 0.141683 (-0.119759) | 1.490067 / 1.452155 (0.037913) | 1.539134 / 1.492716 (0.046417) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.280072 / 0.018006 (0.262066) | 0.456130 / 0.000490 (0.455641) | 0.020926 / 0.000200 (0.020726) | 0.000107 / 0.000054 (0.000053) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032040 / 0.037411 (-0.005371) | 0.092343 / 0.014526 (0.077817) | 0.104866 / 0.176557 (-0.071690) | 0.156631 / 0.737135 (-0.580505) | 0.107203 / 0.296338 (-0.189136) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.426268 / 0.215209 (0.211059) | 4.255539 / 2.077655 (2.177884) | 2.285077 / 1.504120 (0.780957) | 2.114277 / 1.541195 (0.573083) | 2.159242 / 1.468490 (0.690752) | 0.489421 / 4.584777 (-4.095356) | 3.630797 / 3.745712 (-0.114915) | 3.205238 / 5.269862 (-2.064624) | 1.985846 / 4.565676 (-2.579830) | 0.057436 / 0.424275 (-0.366839) | 0.007154 / 0.007607 (-0.000454) | 0.507294 / 0.226044 (0.281250) | 5.050105 / 2.268929 (2.781176) | 2.750474 / 55.444624 (-52.694151) | 2.404116 / 6.876477 (-4.472360) | 2.576483 / 2.142072 (0.434411) | 0.584909 / 4.805227 (-4.220318) | 0.130695 / 6.500664 (-6.369969) | 0.059743 / 0.075469 (-0.015726) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.352702 / 1.841788 (-0.489086) | 19.687944 / 8.074308 (11.613636) | 14.991847 / 10.191392 (4.800455) | 0.185164 / 0.680424 (-0.495260) | 0.020314 / 0.534201 (-0.513887) | 0.395162 / 0.579283 (-0.184121) | 0.408917 / 0.434364 (-0.025447) | 0.467049 / 0.540337 (-0.073288) | 0.649209 / 1.386936 (-0.737727) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#885518608ceab83b7ed8ceba7a0b72bc68096026 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006142 / 0.011353 (-0.005211) | 0.003621 / 0.011008 (-0.007387) | 0.079880 / 0.038508 (0.041372) | 0.059283 / 0.023109 (0.036173) | 0.310971 / 0.275898 (0.035072) | 0.351620 / 0.323480 (0.028140) | 0.003453 / 0.007986 (-0.004532) | 0.003785 / 0.004328 (-0.000543) | 0.062395 / 0.004250 (0.058145) | 0.047614 / 0.037052 (0.010562) | 0.312688 / 0.258489 (0.054199) | 0.363762 / 0.293841 (0.069921) | 0.027051 / 0.128546 (-0.101495) | 0.007920 / 0.075646 (-0.067726) | 0.261080 / 0.419271 (-0.158192) | 0.044476 / 0.043533 (0.000943) | 0.312615 / 0.255139 (0.057476) | 0.343672 / 0.283200 (0.060472) | 0.022723 / 0.141683 (-0.118960) | 1.441449 / 1.452155 (-0.010706) | 1.509253 / 1.492716 (0.016536) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.193171 / 0.018006 (0.175165) | 0.434771 / 0.000490 (0.434281) | 0.003114 / 0.000200 (0.002914) | 0.000065 / 0.000054 (0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024209 / 0.037411 (-0.013203) | 0.073891 / 0.014526 (0.059365) | 0.083497 / 0.176557 (-0.093060) | 0.144962 / 0.737135 (-0.592173) | 0.084594 / 0.296338 (-0.211745) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.392512 / 0.215209 (0.177303) | 3.912692 / 2.077655 (1.835037) | 1.914010 / 1.504120 (0.409890) | 1.743827 / 1.541195 (0.202632) | 1.829244 / 1.468490 (0.360753) | 0.497740 / 4.584777 (-4.087037) | 2.979222 / 3.745712 (-0.766490) | 2.849786 / 5.269862 (-2.420076) | 1.874411 / 4.565676 (-2.691265) | 0.057270 / 0.424275 (-0.367005) | 0.006673 / 0.007607 (-0.000934) | 0.460724 / 0.226044 (0.234679) | 4.600617 / 2.268929 (2.331689) | 2.333178 / 55.444624 (-53.111446) | 1.999902 / 6.876477 (-4.876575) | 2.170600 / 2.142072 (0.028528) | 0.587716 / 4.805227 (-4.217511) | 0.126374 / 6.500664 (-6.374290) | 0.061926 / 0.075469 (-0.013543) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.229767 / 1.841788 (-0.612021) | 18.494462 / 8.074308 (10.420154) | 13.799801 / 10.191392 (3.608409) | 0.137952 / 0.680424 (-0.542472) | 0.017037 / 0.534201 (-0.517164) | 0.333252 / 0.579283 (-0.246031) | 0.357276 / 0.434364 (-0.077088) | 0.380069 / 0.540337 (-0.160268) | 0.526968 / 1.386936 (-0.859968) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006185 / 0.011353 (-0.005168) | 0.003595 / 0.011008 (-0.007413) | 0.063371 / 0.038508 (0.024863) | 0.060461 / 0.023109 (0.037351) | 0.455016 / 0.275898 (0.179118) | 0.490505 / 0.323480 (0.167026) | 0.004738 / 0.007986 (-0.003247) | 0.002852 / 0.004328 (-0.001477) | 0.064161 / 0.004250 (0.059910) | 0.047411 / 0.037052 (0.010359) | 0.453815 / 0.258489 (0.195326) | 0.485354 / 0.293841 (0.191513) | 0.028358 / 0.128546 (-0.100188) | 0.008101 / 0.075646 (-0.067545) | 0.068399 / 0.419271 (-0.350873) | 0.040928 / 0.043533 (-0.002605) | 0.462263 / 0.255139 (0.207124) | 0.478773 / 0.283200 (0.195574) | 0.019787 / 0.141683 (-0.121896) | 1.475798 / 1.452155 (0.023643) | 1.563890 / 1.492716 (0.071174) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.239701 / 0.018006 (0.221695) | 0.417442 / 0.000490 (0.416953) | 0.005895 / 0.000200 (0.005695) | 0.000087 / 0.000054 (0.000033) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026155 / 0.037411 (-0.011256) | 0.081264 / 0.014526 (0.066738) | 0.089734 / 0.176557 (-0.086822) | 0.143965 / 0.737135 (-0.593171) | 0.092156 / 0.296338 (-0.204182) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.456420 / 0.215209 (0.241211) | 4.545675 / 2.077655 (2.468020) | 2.477141 / 1.504120 (0.973022) | 2.295142 / 1.541195 (0.753947) | 2.349525 / 1.468490 (0.881035) | 0.502485 / 4.584777 (-4.082292) | 3.072347 / 3.745712 (-0.673365) | 2.798565 / 5.269862 (-2.471296) | 1.849030 / 4.565676 (-2.716647) | 0.057789 / 0.424275 (-0.366487) | 0.006436 / 0.007607 (-0.001172) | 0.529648 / 0.226044 (0.303604) | 5.285670 / 2.268929 (3.016741) | 2.954964 / 55.444624 (-52.489660) | 2.593161 / 6.876477 (-4.283316) | 2.735254 / 2.142072 (0.593181) | 0.587635 / 4.805227 (-4.217592) | 0.124732 / 6.500664 (-6.375932) | 0.060999 / 0.075469 (-0.014470) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.354957 / 1.841788 (-0.486831) | 18.803998 / 8.074308 (10.729690) | 14.902712 / 10.191392 (4.711320) | 0.146729 / 0.680424 (-0.533695) | 0.017989 / 0.534201 (-0.516212) | 0.333633 / 0.579283 (-0.245650) | 0.347685 / 0.434364 (-0.086679) | 0.386497 / 0.540337 (-0.153840) | 0.590885 / 1.386936 (-0.796051) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#392d8a46f4da066408785281d9b87760f7273254 \"CML watermark\")\n" ]
2023-08-24T16:16:09
2023-08-25T16:30:00
2023-08-25T16:21:17
CONTRIBUTOR
null
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6177/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6177/timeline
null
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6177", "html_url": "https://github.com/huggingface/datasets/pull/6177", "diff_url": "https://github.com/huggingface/datasets/pull/6177.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6177.patch", "merged_at": "2023-08-25T16:21:17" }
true

Dataset Card for "github-issues"

More Information needed

Downloads last month
31