Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
MATH-lighteval / README.md
LenDigLearn's picture
Update README.md
0530c78 verified
metadata
annotations_creators:
  - expert-generated
language_creators:
  - expert-generated
pretty_name: Mathematics Aptitude Test of Heuristics (MATH)
size_categories:
  - 10K<n<100K
source_datasets:
  - hendrycks/competition_math
license: mit
dataset_info:
  - config_name: algebra
    features:
      - name: problem
        dtype: string
      - name: level
        dtype: string
      - name: solution
        dtype: string
      - name: type
        dtype: string
    splits:
      - name: train
        num_bytes: 955021
        num_examples: 1744
      - name: test
        num_bytes: 648291
        num_examples: 1187
    download_size: 858300
    dataset_size: 1603312
  - config_name: counting_and_probability
    features:
      - name: problem
        dtype: string
      - name: level
        dtype: string
      - name: solution
        dtype: string
      - name: type
        dtype: string
    splits:
      - name: train
        num_bytes: 667385
        num_examples: 771
      - name: test
        num_bytes: 353803
        num_examples: 474
    download_size: 504386
    dataset_size: 1021188
  - config_name: default
    features:
      - name: problem
        dtype: string
      - name: level
        dtype: string
      - name: solution
        dtype: string
      - name: type
        dtype: string
    splits:
      - name: train
        num_bytes: 5984772
        num_examples: 7500
      - name: test
        num_bytes: 3732833
        num_examples: 5000
    download_size: 4848021
    dataset_size: 9717605
  - config_name: geometry
    features:
      - name: problem
        dtype: string
      - name: level
        dtype: string
      - name: solution
        dtype: string
      - name: type
        dtype: string
    splits:
      - name: train
        num_bytes: 1077241
        num_examples: 870
      - name: test
        num_bytes: 523126
        num_examples: 479
    download_size: 813223
    dataset_size: 1600367
  - config_name: intermediate_algebra
    features:
      - name: problem
        dtype: string
      - name: level
        dtype: string
      - name: solution
        dtype: string
      - name: type
        dtype: string
    splits:
      - name: train
        num_bytes: 1157476
        num_examples: 1295
      - name: test
        num_bytes: 795070
        num_examples: 903
    download_size: 969951
    dataset_size: 1952546
  - config_name: number_theory
    features:
      - name: problem
        dtype: string
      - name: level
        dtype: string
      - name: solution
        dtype: string
      - name: type
        dtype: string
    splits:
      - name: train
        num_bytes: 595793
        num_examples: 869
      - name: test
        num_bytes: 349455
        num_examples: 540
    download_size: 490656
    dataset_size: 945248
  - config_name: prealgebra
    features:
      - name: problem
        dtype: string
      - name: level
        dtype: string
      - name: solution
        dtype: string
      - name: type
        dtype: string
    splits:
      - name: train
        num_bytes: 715611
        num_examples: 1205
      - name: test
        num_bytes: 510195
        num_examples: 871
    download_size: 651355
    dataset_size: 1225806
  - config_name: precalculus
    features:
      - name: problem
        dtype: string
      - name: level
        dtype: string
      - name: solution
        dtype: string
      - name: type
        dtype: string
    splits:
      - name: train
        num_bytes: 816245
        num_examples: 746
      - name: test
        num_bytes: 552893
        num_examples: 546
    download_size: 595986
    dataset_size: 1369138
configs:
  - config_name: algebra
    data_files:
      - split: train
        path: algebra/train-*
      - split: test
        path: algebra/test-*
  - config_name: counting_and_probability
    data_files:
      - split: train
        path: counting_and_probability/train-*
      - split: test
        path: counting_and_probability/test-*
  - config_name: default
    data_files:
      - split: train
        path: data/train-*
      - split: test
        path: data/test-*
  - config_name: geometry
    data_files:
      - split: train
        path: geometry/train-*
      - split: test
        path: geometry/test-*
  - config_name: intermediate_algebra
    data_files:
      - split: train
        path: intermediate_algebra/train-*
      - split: test
        path: intermediate_algebra/test-*
  - config_name: number_theory
    data_files:
      - split: train
        path: number_theory/train-*
      - split: test
        path: number_theory/test-*
  - config_name: prealgebra
    data_files:
      - split: train
        path: prealgebra/train-*
      - split: test
        path: prealgebra/test-*
  - config_name: precalculus
    data_files:
      - split: train
        path: precalculus/train-*
      - split: test
        path: precalculus/test-*
language:
  - en
tags:
  - explanation-generation
task_categories:
  - text2text-generation

Dataset Card for Mathematics Aptitude Test of Heuristics (MATH) dataset in lighteval format

Table of Contents

Dataset Description

Dataset Summary

The Mathematics Aptitude Test of Heuristics (MATH) dataset consists of problems from mathematics competitions, including the AMC 10, AMC 12, AIME, and more. Each problem in MATH has a full step-by-step solution, which can be used to teach models to generate answer derivations and explanations. This version of the dataset contains appropriate builder configs s.t. it can be used as a drop-in replacement for the inexplicably missing lighteval/MATH dataset.

Dataset Structure

Data Instances

A data instance consists of a competition math problem and its step-by-step solution written in LaTeX and natural language. The step-by-step solution contains the final answer enclosed in LaTeX's \boxed tag.

An example from the dataset is:

{'problem': 'A board game spinner is divided into three parts labeled $A$, $B$  and $C$. The probability of the spinner landing on $A$ is $\\frac{1}{3}$ and the probability of the spinner landing on $B$ is $\\frac{5}{12}$.  What is the probability of the spinner landing on $C$? Express your answer as a common fraction.',
 'level': 'Level 1',
 'type': 'Counting & Probability',
 'solution': 'The spinner is guaranteed to land on exactly one of the three regions, so we know that the sum of the probabilities of it landing in each region will be 1. If we let the probability of it landing in region $C$ be $x$, we then have the equation $1 = \\frac{5}{12}+\\frac{1}{3}+x$, from which we have $x=\\boxed{\\frac{1}{4}}$.'}

Data Fields

  • problem: The competition math problem.
  • solution: The step-by-step solution.
  • level: The problem's difficulty level from 'Level 1' to 'Level 5', where a subject's easiest problems for humans are assigned to 'Level 1' and a subject's hardest problems are assigned to 'Level 5'.
  • type: The subject of the problem: Algebra, Counting & Probability, Geometry, Intermediate Algebra, Number Theory, Prealgebra and Precalculus.

Data Splits

  • train: 7,500 examples
  • test: 5,000 examples

Builder Configs

  • default: 7,500 train and 5,000 test examples (full dataset)
  • algebra: 1,744 train and 1,187 test examples
  • counting_and_probability: 771 train and 474 test examples
  • geometry: 870 train 479 test examples
  • intermediate_algebra: 1,295 train and 903 test examples
  • number_theory: 869 train and 540 test examples
  • prealgebra: 1,205 train and 871 test examples
  • precalculus: 746 train and 546 test examples

Additional Information

Licensing Information

https://github.com/hendrycks/math/blob/main/LICENSE

This repository was created from the hendrycks/competition_math dataset. All credit goes to the original authors.

Citation Information

@article{hendrycksmath2021,
    title={Measuring Mathematical Problem Solving With the MATH Dataset},
    author={Dan Hendrycks
    and Collin Burns
    and Saurav Kadavath
    and Akul Arora
    and Steven Basart
    and Eric Tang
    and Dawn Song
    and Jacob Steinhardt},
    journal={arXiv preprint arXiv:2103.03874},
    year={2021}
}

Contributions

Thanks to @hacobe for adding this dataset.