Datasets:

Modalities:
Image
Text
Formats:
parquet
ArXiv:
DOI:
Libraries:
Datasets
pandas
License:
WildBe / README.md
luigiriz's picture
Update funding info
39e42e2 verified
|
raw
history blame
5.45 kB
metadata
license: cc-by-nc-4.0
task_categories:
  - object-detection
pretty_name: WildBe
size_categories:
  - 1K<n<10K
tags:
  - drone imagery
  - agriculture
  - in the wild

Wild Berry image dataset collected in Finnish forests and peatlands using drones

Introduction

Berry picking has long-standing traditions in Finland, yet it is challenging and can potentially be dangerous. The integration of drones equipped with advanced imaging techniques represents a transformative leap forward, optimising harvests and promising sustainable practices. We propose WildBe, the first image dataset of wild berries captured in peatlands and under the canopy of Finnish forests using drones. Unlike previous and related datasets, WildBe in- cludes new varieties of berries, such as bilberries, cloudberries, lingonberries, and crowberries, captured under severe light variations and in cluttered environments. WildBe features 3,516 images, including a total of 18,468 annotated bounding boxes.

Teaser

How to use: an example of visualization

import json
import numpy as np
from datasets import load_dataset
from PIL import Image, ImageDraw
# Color map for classes
classes_color_map = {
    0: (225,15,10),
    1: (40, 150, 210),
    2: (10,0,210),
    3: (130,5,125),
}
# Load the dataset
dataset = load_dataset("FBK-TeV/WildBe", split="validation")
#Read first image and its lables
image_bytes = dataset[0]["image"]
np_image = np.frombuffer(image_bytes, dtype=np.uint8)
np_image = np_image.reshape(dataset[0]["image_height"], dataset[0]["image_width"], 3)
image = Image.fromarray(np_image)
labels = json.loads(dataset[0]["labels"])
draw = ImageDraw.Draw(image)
#Draw lables
for label in labels:
    center_x = label["x"] * dataset[0]["image_width"]
    center_y = label["y"] * dataset[0]["image_height"]
    width = label["width"] * dataset[0]["image_width"]
    height = label["height"] * dataset[0]["image_height"]
    draw.rectangle(
        [
            (center_x - width / 2, center_y - height / 2),
            (center_x + width / 2, center_y + height / 2),
        ],
        outline=classes_color_map[label["class"]],
        width=2,
    )
image.show()

Teaser

ArXiv link

https://arxiv.org/abs/2405.07550

APA Citaion

Riz, L., Povoli, S., Caraffa, A., Boscaini, D., Mekhalfi, M. L., Chippendale, P., ... & Poiesi, F. (2024). Wild Berry image dataset collected in Finnish forests and peatlands using drones. arXiv preprint arXiv:2405.07550.

Bibtex

@article{riz2024wild,
  title={Wild Berry image dataset collected in Finnish forests and peatlands using drones},
  author={Riz, Luigi and Povoli, Sergio and Caraffa, Andrea and Boscaini, Davide and Mekhalfi, Mohamed Lamine and Chippendale, Paul and Turtiainen, Marjut and Partanen, Birgitta and Ballester, Laura Smith and Noguera, Francisco Blanes and others},
  journal={arXiv preprint arXiv:2405.07550},
  year={2024}
}

Acknowledgement

FEROX logo

The FEROX project has received funding from the European Union’s Horizon Framework Programme for Research and Innovation under the Grant Agreement no 101070440 - call HORIZON-CL4-2021-DIGITAL-EMERGING-01-10: AI, Data and Robotics at work (IA).

Partners

FONDAZIONE BRUNO KESSLER
Italy
TAMPERE UNIVERSITY
Finland
UNIVERSITAT POLITECNICA DE VALENCIA
Spain
INGENIARIUS
Portugal
FINNISH GEOSPATIAL RESEARCH INSTITUTE
Finland
CRANFIELD UNIVERSITY
United Kingdom
DEEP FORESTRY
Sweden
GEMMO AI
Ireland
ARKTISET AROMIT
Finland
FBK TAU UPV ING FGI CU DF GEM AFA