Datasets:
File size: 11,951 Bytes
c609620 5648408 c609620 49ac8b1 c609620 49ac8b1 c609620 d344414 2b42c85 d344414 2b42c85 d344414 2b42c85 d344414 2b42c85 d344414 2b42c85 d344414 2b42c85 c609620 5648408 c609620 2b42c85 c609620 d648ad0 c609620 2b42c85 c609620 13a796b 2b42c85 5648408 c609620 d344414 49ac8b1 2b42c85 d648ad0 2b42c85 49ac8b1 c609620 d344414 c609620 2b42c85 c609620 d344414 974e002 c609620 49ac8b1 2b42c85 c609620 2b42c85 c609620 2b42c85 c609620 d648ad0 c609620 5648408 974e002 2b42c85 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""
import csv
import json
import re
import datasets
# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@inproceedings{perez2019generating,
title={Generating Summaries with Topic Templates and Structured Convolutional Decoders},
author={Perez-Beltrachini, Laura and Liu, Yang and Lapata, Mirella},
booktitle={Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics},
pages={5107--5116},
year={2019}
}
"""
# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
Summarise the most important facts of a given entity in the Film, Company, and Animal domains from a cluster of related documents.
"""
# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = "https://datashare.ed.ac.uk/handle/10283/3368"
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = "CC BY-SA 3.0"
# TODO: Add link to the official dataset URLs here
# The HuggingFace dataset library don't host the datasets but only point to the original files
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLs = {
"animal": {
"train": "main_splits/train-animal.jsonl",
"validation": "main_splits/valid-animal.jsonl",
"test": "main_splits/test-animal.jsonl",
"cs_abs": [
"cs_abs/test-animal_nv_0.jsonl",
"cs_abs/test-animal_nv_1.jsonl",
"cs_abs/test-animal_nv_2.jsonl",
"cs_abs/test-animal_nv_3.jsonl",
"cs_abs/test-animal_nv_4.jsonl",
"cs_abs/test-animal_nv_6.jsonl",
"cs_abs/test-animal_nv_7.jsonl",
"cs_abs/test-animal_nv_8.jsonl",
"cs_abs/test-animal_nv_9.jsonl",
],
"cs_tdiv": [
"cs_tdiv/test-animal_tdiv_0.jsonl",
"cs_tdiv/test-animal_tdiv_1.jsonl",
"cs_tdiv/test-animal_tdiv_2.jsonl",
"cs_tdiv/test-animal_tdiv_3.jsonl",
],
},
"company": {
"train": "main_splits/train-company.jsonl",
"validation": "main_splits/valid-company.jsonl",
"test": "main_splits/test-company.jsonl",
"cs_abs": [
"cs_abs/test-company_nv_0.jsonl",
"cs_abs/test-company_nv_1.jsonl",
"cs_abs/test-company_nv_2.jsonl",
"cs_abs/test-company_nv_3.jsonl",
"cs_abs/test-company_nv_4.jsonl",
"cs_abs/test-company_nv_6.jsonl",
"cs_abs/test-company_nv_7.jsonl",
"cs_abs/test-company_nv_8.jsonl",
"cs_abs/test-company_nv_9.jsonl",
],
"cs_tdiv": [
"cs_tdiv/test-company_tdiv_0.jsonl",
"cs_tdiv/test-company_tdiv_1.jsonl",
"cs_tdiv/test-company_tdiv_2.jsonl",
"cs_tdiv/test-company_tdiv_3.jsonl",
],
},
"film": {
"train": "main_splits/train-film.jsonl",
"validation": "main_splits/valid-film.jsonl",
"test": "main_splits/test-film.jsonl",
"cs_abs": [
"cs_abs/test-film_nv_0.jsonl",
"cs_abs/test-film_nv_1.jsonl",
"cs_abs/test-film_nv_2.jsonl",
"cs_abs/test-film_nv_3.jsonl",
"cs_abs/test-film_nv_4.jsonl",
"cs_abs/test-film_nv_6.jsonl",
"cs_abs/test-film_nv_7.jsonl",
"cs_abs/test-film_nv_8.jsonl",
"cs_abs/test-film_nv_9.jsonl",
],
"cs_tdiv": [
"cs_tdiv/test-film_tdiv_0.jsonl",
"cs_tdiv/test-film_tdiv_1.jsonl",
"cs_tdiv/test-film_tdiv_2.jsonl",
"cs_tdiv/test-film_tdiv_3.jsonl",
],
},
}
def detokenize(text):
"""
Untokenizing a text undoes the tokenizing operation, restoring
punctuation and spaces to the places that people expect them to be.
Ideally, `untokenize(tokenize(text))` should be identical to `text`,
except for line breaks.
"""
step1 = text.replace("`` ", '"').replace(" ''", '"').replace(". . .", "...")
step2 = step1.replace(" ( ", " (").replace(" ) ", ") ")
step3 = re.sub(r' ([.,:;?!%]+)([ \'"`])', r"\1\2", step2)
step4 = re.sub(r" ([.,:;?!%]+)$", r"\1", step3)
step5 = (
step4.replace(" '", "'")
.replace(" n't", "n't")
.replace("can not", "cannot")
.replace(" 've", "'ve")
)
step6 = step5.replace(" ` ", " '")
return step6.strip()
class WikiCatSum(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
VERSION = datasets.Version("0.1.0")
# If you need to make complex sub-parts in the datasets with configurable options
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
# BUILDER_CONFIG_CLASS = MyBuilderConfig
# You will be able to load one or the other configurations in the following list with
# data = datasets.load_dataset('my_dataset', 'first_domain')
# data = datasets.load_dataset('my_dataset', 'second_domain')
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="animal", version=VERSION, description="Animal domain"
),
datasets.BuilderConfig(
name="company", version=VERSION, description="Company domain"
),
datasets.BuilderConfig(name="film", version=VERSION, description="Film domain"),
]
DEFAULT_CONFIG_NAME = "animal" # It's not mandatory to have a default configuration. Just use one if it make sense.
def _info(self):
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
features = datasets.Features(
{
"gem_id": datasets.Value("string"),
"gem_parent_id": datasets.Value("string"),
"id": datasets.Value("string"),
"title": datasets.Value("string"),
"paragraphs": datasets.features.Sequence(datasets.Value("string")),
"summary": datasets.features.Sequence(
{
"text": datasets.Value("string"),
"topic": datasets.Value("int16"),
}
),
"target": datasets.Value("string"),
"references": [
datasets.Value("string"),
],
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
my_urls = _URLs[self.config.name]
d_conf = dl_manager.download_and_extract(my_urls)
challenge_sets = [
("challenge_test_abstractivity_%d" % (lvl), fname)
for lvl, fname in enumerate(d_conf["cs_abs"])
] + [
("challenge_test_topic_diversity_%d" % (lvl), fname)
for lvl, fname in enumerate(d_conf["cs_abs"])
]
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": d_conf["train"],
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": d_conf["validation"], "split": "test"},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": d_conf["test"],
"split": "validation",
},
),
] + [
datasets.SplitGenerator(
name=challenge_split,
gen_kwargs={
"filepath": filename,
"split": challenge_split,
},
)
for challenge_split, filename in challenge_sets
]
def _generate_examples(
self,
filepath,
split, # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
):
"""Yields examples as (key, example) tuples."""
# This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
# The `key` is here for legacy reason (tfds) and is not important in itself.
with open(filepath, encoding="utf-8") as f:
for id_, row in enumerate(f):
data = json.loads(row)
data["paragraphs"] = [detokenize(p) for p in data["paragraphs"]]
# If summary is a list itself, we have multi-ref.
if isinstance(data["summary"], list):
detok_targets = [
detokenize(" ".join(s["text"])) for s in data["summary"]
]
data["target"] = detok_targets[0]
data["references"] = detok_targets
elif isinstance(data["summary"]["text"], list):
detok_target = detokenize(" ".join(data["summary"]["text"]))
data["target"] = detok_target
data["references"] = [detok_target]
# elif isinstance(data["summary"]["text"], str):
# detok_target = detokenize(data["summary"]["text"])
else:
print(data["summary"])
exit()
data["gem_parent_id"] = f"{self.config.name}-{split}-{id_+1}"
data["gem_id"] = f"{self.config.name}-{split}-{id_+1}"
yield id_, data
|