|
--- |
|
language: |
|
- en |
|
size_categories: |
|
- 100M<n<1B |
|
task_categories: |
|
- text-classification |
|
dataset_info: |
|
features: |
|
- name: premise |
|
dtype: string |
|
- name: hypothesis |
|
dtype: string |
|
- name: label |
|
dtype: |
|
class_label: |
|
names: |
|
'0': entailment |
|
'1': neutral |
|
'2': contradiction |
|
splits: |
|
- name: train |
|
num_bytes: 370699678.0762534 |
|
num_examples: 1688053 |
|
- name: dev |
|
num_bytes: 5041282.50235704 |
|
num_examples: 14450 |
|
- name: test_anli_r1 |
|
num_bytes: 405400.0 |
|
num_examples: 1000 |
|
- name: test_anli_r2 |
|
num_bytes: 405263.0 |
|
num_examples: 1000 |
|
- name: test_anli_r3 |
|
num_bytes: 468098.0 |
|
num_examples: 1200 |
|
- name: test_vitaminc |
|
num_bytes: 1291371.9832599598 |
|
num_examples: 5520 |
|
download_size: 196618794 |
|
dataset_size: 378311093.56187046 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
- split: dev |
|
path: data/dev-* |
|
- split: test_anli_r1 |
|
path: data/test_anli_r1-* |
|
- split: test_anli_r2 |
|
path: data/test_anli_r2-* |
|
- split: test_anli_r3 |
|
path: data/test_anli_r3-* |
|
- split: test_vitaminc |
|
path: data/test_vitaminc-* |
|
tags: |
|
- natural-language-inference |
|
- fact-checking |
|
--- |
|
|
|
This monolingual (English) NLI dataset is designed for performing Natural Language Inference, and is particularly Fact-Checking oriented. |
|
Dev split is oriented to teach the model how to deal well with pure NLI (ANLI is well designed for this task) and test his general knowledge (Fact-Checking skills) with VitaminC, which is known for its robustness for this task. |
|
|
|
It contains: |
|
- 14.5k examples for the dev split of which: |
|
- 848 from ANLI train_r1; |
|
- 2273 from ANLI train_r2; |
|
- 5023 from ANLI train_r3; |
|
- 6306 from VitaminC dev. |
|
- 4 test splits (the 3 test splits of the ANLI dataset and 10% of the VitaminC test split). |
|
- The remaining data composes the train split. |
|
|
|
Datasets references: |
|
- SNLI: https://huggingface.co/datasets/stanfordnlp/snli |
|
- ANLI: https://huggingface.co/datasets/facebook/anli |
|
- FEVER: https://huggingface.co/datasets/pietrolesci/nli_fever |
|
- MNLI: https://huggingface.co/datasets/nyu-mll/multi_nli |
|
- QNLI: https://huggingface.co/datasets/yangwang825/qnli |
|
- WNLI (augmented with GLUE): https://huggingface.co/datasets/gokuls/glue_augmented_wnli |
|
- SciTail: https://huggingface.co/datasets/allenai/scitail |
|
- RTE: https://huggingface.co/datasets/yangwang825/rte |
|
- Climate-FEVER: https://huggingface.co/datasets/Jasontth/climate_fever_plus |
|
- VitaminC: https://huggingface.co/datasets/tals/vitaminc |