Datasets:

Modalities:
Image
Languages:
English
ArXiv:
Libraries:
Datasets
License:
Search is not available for this dataset
image
imagewidth (px)
78
78
label
class label
6 classes
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere
0Centromere

Dataset card for HEp2

The HEp-2 (Human Epithelial type 2) dataset is a widely used benchmark in the field of medical image analysis, especially for the task of antinuclear antibody (ANA) pattern classification. The dataset contains microscopic images of HEp-2 cells stained with fluorescence, demonstrating multiple patterns of autoantibody binding associated with various autoimmune diseases. The HEp-2 dataset is utilized by researchers and practitioners to develop and evaluate algorithms for automated ANA pattern recognition to aid in the diagnosis of autoimmune diseases. The intricate patterns in this dataset test the robustness of computational models, making it a valuable resource for advancing the understanding of autoimmune diseases and the development of advanced medical image analysis techniques.

Viewer

https://www.modelscope.cn/datasets/Genius-Society/HEp2/dataPeview

Usage

from datasets import load_dataset

ds = load_dataset("Genius-Society/HEp2", split="train")
labels = ds.features["label"].names

for item in ds:
    print("image: ", item["image"])
    print("label name: " + labels[item["label"]])

Mirror

https://www.modelscope.cn/datasets/Genius-Society/HEp2

Reference

[1] Chapter III ‐ Classifying Cell Images Using Deep Learning Models
[2] HEp-2 Cell Image Classification with Deep Convolutional Neural Networks

Downloads last month
145

Models trained or fine-tuned on Genius-Society/HEp2

Space using Genius-Society/HEp2 1