|
--- |
|
dataset_info: |
|
features: |
|
- name: seqs |
|
dtype: string |
|
- name: labels |
|
dtype: float64 |
|
splits: |
|
- name: train |
|
num_bytes: 2933951 |
|
num_examples: 6837 |
|
- name: valid |
|
num_bytes: 217038 |
|
num_examples: 498 |
|
- name: test |
|
num_bytes: 204262 |
|
num_examples: 469 |
|
download_size: 2178499 |
|
dataset_size: 3355251 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
- split: valid |
|
path: data/valid-* |
|
- split: test |
|
path: data/test-* |
|
--- |
|
|
|
[DLKcat](https://github.com/SysBioChalmers/DLKcat) (BRENDA and SABIO-RK) with splits from [Biomap](https://huggingface.co/datasets/Bo1015/enzyme_catalytic_efficiency), and repeated and short sequences removed. Enzymes with multiple reactions have their kcat averaged. |
|
|
|
The kcat is log10 normalized, so the unit is log10(1/s). However, because it is averaged over reactions and also reaction ambiguous, it is really just a general proxy for catalytic rate. Higher is faster. |
|
|
|
Processing: |
|
``` |
|
import pandas as pd |
|
from datasets import Dataset, DatasetDict, concatenate_datasets |
|
|
|
def process_dataset(dataset_dict): |
|
precedence = ['train', 'valid', 'test'] |
|
# Add a 'split' column to each dataset |
|
for split in dataset_dict.keys(): |
|
dataset_dict[split] = dataset_dict[split].add_column('split', [split]*len(dataset_dict[split])) |
|
# Concatenate all splits into one dataset |
|
all_data = concatenate_datasets([dataset_dict[split] for split in dataset_dict.keys()]) |
|
# Convert to pandas DataFrame |
|
df = all_data.to_pandas() |
|
# Remove sequences with length less than 50 |
|
df['seq_length'] = df['seqs'].apply(len) |
|
df = df[df['seq_length'] >= 50] |
|
# Group by 'seqs' to find duplicates and average the labels |
|
def aggregate_group(group): |
|
avg_label = group['labels'].mean() |
|
# Assign the sequence to the highest-precedence split it appears in |
|
for p in precedence: |
|
if p in group['split'].values: |
|
selected_split = p |
|
break |
|
return pd.Series({'labels': avg_label, 'split': selected_split}) |
|
df_grouped = df.groupby('seqs').apply(aggregate_group).reset_index() |
|
# Split the DataFrame back into the original splits without overlapping sequences |
|
new_dataset_dict = DatasetDict() |
|
for split in precedence: |
|
df_split = df_grouped[df_grouped['split'] == split] |
|
new_dataset_dict[split] = Dataset.from_pandas(df_split[['seqs', 'labels']], preserve_index=False) |
|
return new_dataset_dict |
|
``` |
|
|
|
From [DLKcat paper](https://www.nature.com/articles/s41929-022-00798-z) |
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/62f2bd3bdb7cbd214b658c48/bC5PQ_O9_xKZzYEIYxuEM.png) |
|
|
|
|