|
import csv |
|
import os |
|
import datasets |
|
import numpy as np |
|
from datetime import datetime |
|
import pandas as pd |
|
from datasets import IterableDataset |
|
from scipy.stats import skew |
|
import sys |
|
import pickle |
|
from sklearn.preprocessing import LabelEncoder |
|
|
|
DATASET_SAVE_PATH = os.path.join(os.path.expanduser('~'),"mimic3_dataset") |
|
os.makedirs(DATASET_SAVE_PATH,exist_ok=True) |
|
|
|
np.set_printoptions(threshold=sys.maxsize) |
|
np.set_printoptions(suppress=True) |
|
|
|
|
|
|
|
|
|
def get_progression(current,total,length=20,filled_str="=",empty_str="-"): |
|
nb = round(length*current/total) |
|
return "["+(nb*filled_str)+((length-nb)*empty_str)+"]" |
|
|
|
def is_empty_value(value,empty_value): |
|
""" |
|
Returns if value is an empty value (for exemple np.nan if empty_value is np.nan) |
|
value must not be a list |
|
""" |
|
return (isinstance(value,float) and np.isnan(empty_value) and np.isnan(value)) or ((type(value) != list) and (value == empty_value)) |
|
|
|
def is_empty_list(l,empty_value): |
|
""" |
|
Returns if list is filled only with empty values (for exemple empty_value==np.nan and empty_value==[np.nan,np.nan]) |
|
value must be a list |
|
""" |
|
if isinstance(l,float) or isinstance(l,str) or isinstance(l,int): |
|
return False |
|
for elem in l: |
|
if not is_empty_value(elem,empty_value): |
|
return False |
|
return True |
|
|
|
def dtc(x): |
|
""" |
|
string to datetime |
|
""" |
|
return datetime.strptime(x, '%Y-%m-%d %H:%M:%S') |
|
|
|
def bic(x): |
|
""" |
|
string to int |
|
""" |
|
try: |
|
return (-1 if x == "" else int(x)) |
|
except: |
|
print("error",x) |
|
return -1 |
|
def bfc(x): |
|
""" |
|
string to float |
|
""" |
|
try: |
|
return (-1 if x == "" else float(x)) |
|
except: |
|
print("error",x) |
|
return -1 |
|
|
|
def id_to_string(id): |
|
""" |
|
id (string or float) to float |
|
""" |
|
if (isinstance(id,float) and np.isnan(id)) or not id or id == "": |
|
return id |
|
try: |
|
return str(int(float(id))) |
|
except: |
|
return str(id) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def calculate_normalization(iterator): |
|
""" |
|
calculates means and stds over every columns of every episode given by iterator\n |
|
""" |
|
nb = 0 |
|
sum_x = None |
|
sum_x_sq = None |
|
|
|
|
|
for batch in iterator: |
|
x = np.array(batch[0]) |
|
nb += x.shape[0]*x.shape[1] |
|
if sum_x is None: |
|
sum_x = np.sum(x, axis=(0,1)) |
|
sum_x_sq = np.sum(x**2, axis=(0,1)) |
|
else: |
|
sum_x += np.sum(x, axis=(0,1)) |
|
sum_x_sq += np.sum(x**2, axis=(0,1)) |
|
|
|
|
|
means = (1.0 / nb) * sum_x |
|
eps = 1e-7 |
|
|
|
|
|
stds = np.sqrt((1.0/(nb - 1)) * (sum_x_sq - (2.0 * sum_x * means) + (nb * means**2))) |
|
stds[stds < eps] = eps |
|
|
|
return means,stds |
|
|
|
def normalize(X, means, stds, columns=[]): |
|
""" |
|
normalizes X with means and stds. Columns is the list of columns you want to normalize. if no columns given everything is normalized\n |
|
""" |
|
ret = 1.0 * X |
|
if len(columns) > 0: |
|
for col in columns: |
|
ret[:,:,col] = (X[:,:,col] - means[col]) / stds[col] |
|
else: |
|
for col in range(X.shape[2]): |
|
ret[:,:,col] = (X[:,:,col] - means[col]) / stds[col] |
|
return ret |
|
|
|
def try_load_normalizer(path, nb_columns): |
|
""" |
|
Tries to load means and stds from saved file.\n |
|
If files (path) doesn't exist returns empty means and stds lists |
|
nb_columns is the number of columns in the dataset (not the number of columns you load) |
|
""" |
|
means,stds = np.zeros(nb_columns),np.ones(nb_columns) |
|
|
|
if not os.path.isfile(path): |
|
return [],[] |
|
|
|
with open(path, newline='') as csvfile: |
|
spamreader = csv.DictReader(csvfile, delimiter=',') |
|
for row in spamreader: |
|
means[int(row["column"])] = float(row["mean"]) |
|
stds[int(row["column"])] = float(row["std"]) |
|
|
|
return means,stds |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
normal_values = { |
|
"Capillary refill rate": 0.0, |
|
"Diastolic blood pressure": 59.0, |
|
"Fraction inspired oxygen": 0.21, |
|
"Glascow coma scale eye opening": "4 Spontaneously", |
|
"Glascow coma scale motor response": "6 Obeys Commands", |
|
"Glascow coma scale total": "15.0", |
|
"Glascow coma scale verbal response": "5 Oriented", |
|
"Glucose": 128.0, |
|
"Heart Rate": 86, |
|
"Height": 170.0, |
|
"Mean blood pressure": 77.0, |
|
"Oxygen saturation": 98.0, |
|
"Respiratory rate": 19, |
|
"Systolic blood pressure": 118.0, |
|
"Temperature": 36.6, |
|
"Weight": 81.0, |
|
"pH": 7.4 |
|
} |
|
|
|
|
|
discretizer = { |
|
"Glascow coma scale eye opening": [ |
|
(["None"],0), |
|
(["1 No Response"],1), |
|
(["2 To pain","To Pain"],2), |
|
(["3 To speech","To Speech"],3), |
|
(["4 Spontaneously","Spontaneously"],4), |
|
|
|
], |
|
"Glascow coma scale motor response": [ |
|
(["1 No Response","No response"],1), |
|
(["2 Abnorm extensn","Abnormal extension"],2), |
|
(["3 Abnorm flexion","Abnormal Flexion"],3), |
|
(["4 Flex-withdraws","Flex-withdraws"],4), |
|
(["5 Localizes Pain","Localizes Pain"],5), |
|
(["6 Obeys Commands","Obeys Commands"],6), |
|
], |
|
"Glascow coma scale total": [ |
|
(["3.0"],3), |
|
(["4.0"],4), |
|
(["5.0"],5), |
|
(["6.0"],6), |
|
(["7.0"],7), |
|
(["8.0"],8), |
|
(["9.0"],9), |
|
(["10.0"],10), |
|
(["11.0"],11), |
|
(["12.0"],12), |
|
(["13.0"],13), |
|
(["14.0"],14), |
|
(["15.0"],15), |
|
], |
|
"Glascow coma scale verbal response": [ |
|
(["1 No Response","No Response-ETT","1.0 ET/Trach","No Response"],1), |
|
(["2 Incomp sounds","Incomprehensible sounds"],2), |
|
(["3 Inapprop words","Inappropriate Words"],3), |
|
(["4 Confused","Confused"],4), |
|
(["5 Oriented","Oriented"],5), |
|
] |
|
} |
|
|
|
|
|
itemiddict = {} |
|
|
|
|
|
|
|
|
|
|
|
|
|
def normalize_onehot_episodes_window(row, code_column="", value_column=False, period_length=48.0, window_size=1e-1): |
|
""" |
|
returns a dict which keys are the items of code_column, and values lists representing the sliding window over period_length of size window_size |
|
made for hot encodings |
|
""" |
|
|
|
N_bins = int(period_length / window_size + 1.0 - 0.000001) |
|
|
|
returned_rates = {} |
|
|
|
for idx,starttime in enumerate(row["STARTTIME"]): |
|
|
|
if not pd.isnull(row["ENDTIME"][idx]) and row["ENDTIME"][idx] != None and row["ENDTIME"][idx] != "": |
|
endtime = row["ENDTIME"][idx] |
|
isRate = True |
|
else: |
|
endtime = starttime |
|
isRate = False |
|
code = row[code_column][idx] |
|
if code == "" or (isinstance(code,float) and np.isnan(code)) or pd.isnull(code): |
|
continue |
|
|
|
first_bin_id = int(starttime / window_size - 0.000001) |
|
last_bin_id = min(N_bins-1,int(endtime / window_size - 0.000001)) |
|
|
|
val = 1 |
|
if value_column: |
|
val = row["RATE"][idx]*60 if isRate else row["AMOUNT"][idx]*60 |
|
|
|
|
|
if not code in returned_rates: |
|
returned_rates[code] = [0]*N_bins |
|
|
|
|
|
for bin_id in range(first_bin_id,last_bin_id+1): |
|
returned_rates[code][bin_id] += val |
|
|
|
return returned_rates |
|
|
|
|
|
|
|
|
|
|
|
|
|
def normalize_episodes_window(row, period_length=48.0, window_size=1e-1): |
|
""" |
|
returns a window for the first period_length hours with window_size hours |
|
values in the dict "row" must not be lists |
|
""" |
|
|
|
|
|
types = {} |
|
for e in row["episode"]: |
|
if isinstance(row["episode"][e][0],float): |
|
types[e] = float |
|
else: |
|
types[e] = str |
|
|
|
|
|
episode = {} |
|
|
|
|
|
N_bins = int(period_length / window_size + 1.0 - 0.000001) |
|
|
|
|
|
for e in row["episode"]: |
|
if e != "Hours": |
|
episode[e] = [np.nan]*N_bins |
|
|
|
|
|
for idx,time in enumerate(row["episode"]["Hours"]): |
|
|
|
|
|
bin_id = int(time / window_size - 0.000001) |
|
|
|
|
|
for col in episode: |
|
|
|
v = row["episode"][col][idx] |
|
|
|
|
|
if v != "" and not (isinstance(v,float) and np.isnan(v)) and not v == None: |
|
episode[col][bin_id] = v |
|
|
|
return episode |
|
|
|
|
|
|
|
|
|
|
|
def normalize_episodes_statistics(row, column_scale=True,windows = [(0,1),(0,0.10),(0,0.25),(0,0.50),(0.90,1),(0.75,1),(0.50,1)],functions = [(min,"min"), (max,"max"), (np.mean,"mean"), (np.std,"std"), (skew,"skew"), (len,"len")]): |
|
""" |
|
Doing statistics over episode (row["episode"]) and returning array of it |
|
windows is an array containing all the periods to do statistics on (tuples of percentages, ex: (0.5,0.6) means "between 50% and 60% of the episode")\n |
|
functions are the functions to apply to compute statistics\n |
|
column_scale=True means we calculate the percentages between first and last value for every column. False means we calculate the pourcentages between first and last hours in episode. |
|
""" |
|
episode = row["episode"] |
|
|
|
returned_episode = {x:[] for _,x in functions} |
|
|
|
|
|
L = row["episode"]["Hours"][0] |
|
R = row["episode"]["Hours"][-1] |
|
length = R - L |
|
|
|
|
|
for e in episode: |
|
|
|
|
|
if column_scale: |
|
Li = 0 |
|
Ri = len(row["episode"]["Hours"])-1 |
|
while Li < len(row["episode"]["Hours"])-1 and (np.isnan(row["episode"][e][Li]) or row["episode"][e][Li] == ""): |
|
Li += 1 |
|
while Ri >= 0 and (np.isnan(row["episode"][e][Ri]) or row["episode"][e][Ri] == ""): |
|
Ri -= 1 |
|
if Ri < 0 or Li >= len(row["episode"]["Hours"]): |
|
Li,Ri = 0,0 |
|
L = row["episode"]["Hours"][Li] |
|
R = row["episode"]["Hours"][Ri] |
|
length = R - L |
|
|
|
|
|
if e == "Hours": |
|
continue |
|
|
|
|
|
for window in windows: |
|
|
|
start_index,end_index = window |
|
start_index,end_index = L + start_index*length,L + end_index*length |
|
onepiece = [] |
|
|
|
for i,x in enumerate(row["episode"][e]): |
|
if not np.isnan(x) and end_index+1e-6 > row["episode"]["Hours"][i] > start_index-1e-6: |
|
onepiece.append(x) |
|
|
|
if len(onepiece) == 0: |
|
for function,fname in functions: |
|
returned_episode[fname].append(np.nan) |
|
|
|
else: |
|
for function,fname in functions: |
|
returned_episode[fname].append(function(onepiece)) |
|
return returned_episode |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def convert_CODE_to_onehot(itemid, d_path, field): |
|
""" |
|
returns a oneshot encoding for item of itemid |
|
the dict is found in (d_path) |
|
the fields the itemid are in the dict are in columns field |
|
""" |
|
|
|
global itemiddict |
|
|
|
|
|
if not field in itemiddict: |
|
itemiddict[field] = pd.DataFrame() |
|
for e in d_path: |
|
itemiddict[field] = pd.concat([itemiddict[field],pd.read_csv(e,converters={field:lambda x:str(x)})],ignore_index=True) |
|
itemiddict[field] = itemiddict[field].sort_values(by=field,ignore_index=True).reset_index(drop=True) |
|
|
|
|
|
length = len(itemiddict[field].index) |
|
one_hot = np.zeros((length)) |
|
|
|
|
|
if itemid != "" and itemid != 0: |
|
idx = itemiddict[field][field].searchsorted(str(itemid)) |
|
if idx > 0: |
|
one_hot[idx-1] = 1 |
|
|
|
|
|
return one_hot |
|
|
|
def codes_to_onehot(episode): |
|
""" |
|
returns the episode with every not float value as onehot encodings |
|
""" |
|
episode = episode.copy() |
|
|
|
|
|
for e in episode: |
|
|
|
|
|
if e in discretizer: |
|
|
|
|
|
size = 0 |
|
for die in discretizer[e]: |
|
size += len(die[0]) |
|
|
|
|
|
for i in range(len(episode[e])): |
|
|
|
v = episode[e][i] |
|
|
|
|
|
if (not isinstance(v,float) or not np.isnan(v)) and v != "" and v != 0: |
|
|
|
|
|
episode[e][i] = np.zeros(size,dtype=int) |
|
index = 0 |
|
|
|
|
|
for die in discretizer[e]: |
|
for item in die[0]: |
|
if str(v) == item: |
|
episode[e][i][index] = 1 |
|
index += 1 |
|
|
|
|
|
else: |
|
episode[e][i] = np.full(size,fill_value=np.nan) |
|
|
|
|
|
elif e == "Capillary refill rate": |
|
for i in range(len(episode[e])): |
|
v = episode[e][i] |
|
episode[e][i] = np.zeros(2,dtype=int) |
|
if v != "" and float(v) == 1: |
|
episode[e][i][1] = 1 |
|
elif v != "" and float(v) == 0: |
|
episode[e][i][0] = 1 |
|
|
|
return episode |
|
|
|
def convert_CODE_to_int(itemid, d_path, field): |
|
""" |
|
returns an int encoding for item of itemid |
|
the dict is found in (d_path) |
|
the fields the itemid are in the dict are in columns field |
|
""" |
|
global itemiddict |
|
|
|
|
|
if not field in itemiddict: |
|
itemiddict[field] = pd.DataFrame() |
|
for e in d_path: |
|
itemiddict[field] = pd.concat([itemiddict[field],pd.read_csv(e,converters={field:lambda x:str(x)})],ignore_index=True) |
|
itemiddict[field] = itemiddict[field].sort_values(by=field,ignore_index=True).reset_index(drop=True) |
|
|
|
|
|
if itemid != "" and itemid != 0: |
|
idx = itemiddict[field][field].searchsorted(str(itemid)) |
|
if idx > 0: |
|
return idx-1 |
|
return np.nan |
|
|
|
def codes_to_int(episode): |
|
""" |
|
returns the episode with every not float value as int encodings |
|
""" |
|
|
|
episode = episode.copy() |
|
|
|
|
|
for e in episode: |
|
|
|
|
|
if e in discretizer: |
|
|
|
|
|
for i in range(len(episode[e])): |
|
|
|
v = episode[e][i] |
|
|
|
|
|
if not isinstance(v,float) or not np.isnan(v): |
|
|
|
|
|
if v != "" and v != 0: |
|
value = np.nan |
|
for die in discretizer[e]: |
|
if str(v) in die[0]: |
|
value = die[1] |
|
episode[e][i] = value |
|
|
|
|
|
else: |
|
episode[e][i] = np.nan |
|
|
|
return episode |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def convert_to_numpy_arrays(episode, empty_value=np.nan): |
|
""" |
|
returns the episode as numpy array of shape (row_number,features_width(=features are the keys in episode, can contain arrays,list or values)) |
|
""" |
|
|
|
|
|
features_width = 0 |
|
row_number = 0 |
|
for e in episode["episode"]: |
|
x = episode["episode"][e][0] |
|
if isinstance(x,int) or isinstance(x,float) or x == "": |
|
features_width += 1 |
|
else: |
|
features_width += len(x) |
|
row_number = len(episode["episode"][e]) |
|
|
|
|
|
y_length = 0 |
|
for e in episode: |
|
if e != "episode": |
|
y_length += 1 |
|
|
|
|
|
y_true = np.empty(y_length) |
|
index = 0 |
|
for e in episode: |
|
if e != "episode": |
|
y_true[index] = episode[e] |
|
index+=1 |
|
|
|
|
|
features = np.empty((row_number,features_width)) |
|
index = 0 |
|
|
|
|
|
for e in episode["episode"]: |
|
|
|
|
|
for line,x in enumerate(episode["episode"][e]): |
|
|
|
|
|
if (isinstance(x,float) and np.isnan(x)) or x == "": |
|
features[line,index] = empty_value |
|
|
|
|
|
elif isinstance(x,int) or isinstance(x,float): |
|
features[line,index] = x |
|
|
|
|
|
else: |
|
is_empty_array = True |
|
|
|
|
|
for elem in x: |
|
if not is_empty_value(elem,np.nan): |
|
is_empty_array = False |
|
break |
|
|
|
|
|
if not is_empty_array: |
|
features[line,index:index+len(x)] = x |
|
|
|
|
|
else: |
|
features[line,index:index+len(x)] = np.full(len(x),empty_value) |
|
|
|
|
|
column_exemple = episode["episode"][e][0] |
|
if isinstance(column_exemple,int) or isinstance(column_exemple,float) or x == "": |
|
index += 1 |
|
else: |
|
index += len(x) |
|
|
|
return features,y_true |
|
|
|
def filter_episode(row, episode_filter): |
|
""" |
|
Row contains an episode and the y_trues. |
|
Filters row["episode"] to remove rows within it that satisfies the episode_filter |
|
""" |
|
episode = {col:[] for col in row["episode"]} |
|
|
|
for i in range(len(row["episode"]["Hours"])): |
|
|
|
dico = {header:row["episode"][header][i] for header in row["episode"]} |
|
|
|
|
|
if episode_filter(dico): |
|
for col in episode: |
|
episode[col].append(row["episode"][col][i]) |
|
|
|
|
|
returned = {} |
|
for col in row: |
|
if col != "episode": |
|
returned[col] = row[col] |
|
returned["episode"] = episode |
|
|
|
return returned |
|
|
|
|
|
|
|
|
|
|
|
def input_values(features, empty_value=np.nan, strategy="previous"): |
|
""" |
|
Inputing values in the features (to replace empty_value values in features) with strategy |
|
strategy is in ["previous", "previous-next"] |
|
""" |
|
features = features.copy() |
|
|
|
|
|
if strategy == "previous-next": |
|
for col in features: |
|
col_vals = features[col] |
|
|
|
for i in range(len(col_vals)): |
|
|
|
if is_empty_list(col_vals[i],np.nan) or is_empty_value(col_vals[i], empty_value): |
|
prev_index = i-1 |
|
|
|
|
|
while prev_index >= 0 and (is_empty_list(col_vals[prev_index],np.nan) or is_empty_value(col_vals[prev_index], empty_value)): |
|
prev_index -= 1 |
|
|
|
|
|
if prev_index >= 0: |
|
features[col][i] = col_vals[prev_index] |
|
|
|
|
|
else: |
|
prev_index = i+1 |
|
while prev_index < len(col_vals) and (is_empty_list(col_vals[prev_index],np.nan) or is_empty_value(col_vals[prev_index], empty_value)): |
|
prev_index += 1 |
|
|
|
if prev_index >= i+1 and prev_index < len(col_vals): |
|
features[col][i] = col_vals[prev_index] |
|
elif col in normal_values: |
|
features[col][i] = normal_values[col] |
|
elif strategy == "previous": |
|
for col in features: |
|
col_vals = features[col] |
|
|
|
for i in range(len(col_vals)): |
|
|
|
if is_empty_list(col_vals[i],np.nan) or is_empty_value(col_vals[i], empty_value): |
|
prev_index = i-1 |
|
|
|
|
|
while prev_index >= 0 and (is_empty_list(col_vals[prev_index],np.nan) or is_empty_value(col_vals[prev_index], empty_value)): |
|
prev_index -= 1 |
|
|
|
|
|
if prev_index >= 0: |
|
features[col][i] = col_vals[prev_index] |
|
|
|
elif col in normal_values: |
|
features[col][i] = normal_values[col] |
|
|
|
|
|
return features |
|
|
|
|
|
|
|
def add_mask(episode): |
|
""" |
|
Adding special features to the episode for every column, which is an array of 1 for every not null value |
|
Can be used before DataImputer to know where data were imputed |
|
""" |
|
keys = [key for key in episode.keys()] |
|
for e in keys: |
|
episode["mask_"+e] = [] |
|
for el in episode[e]: |
|
if el == "" or (isinstance(el,float) and np.isnan(el)): |
|
episode["mask_"+e].append(0) |
|
else: |
|
episode["mask_"+e].append(1) |
|
return episode |
|
|
|
|
|
|
|
|
|
|
|
def preprocess_to_learn( |
|
episode, |
|
code_to_onehot=True, |
|
episode_filter=None, |
|
mode="full", |
|
|
|
window_period_length=48.0, |
|
window_size=0.7, |
|
|
|
statistics_mode_column_scale=True, |
|
|
|
empty_value=np.nan, |
|
input_strategy=None, |
|
add_mask_columns=False, |
|
): |
|
""" |
|
Main function to transform dataset rows to numpy arrays\n |
|
episode is the episode to transform\n |
|
code_to_onehot is True if you want to transform non-float data to onehot, else it is converted to int\n |
|
episode_filter is a filter function you want to apply to episodes to remove rows\n |
|
mode is the mode of transformation. Avaible : statistics (for randomforest), window (for LSTM)\n\n |
|
window_period_length is the length of episode to do windows in (for window mode)\n |
|
window_size is the size of the window (for window mode)\n\n |
|
statistics_mode_column_scale is the column mode for statistics mode (see normalize_episodes_statistics)\n |
|
empty_value is the value to put where no data\n |
|
input_strategy can be "previous" or "previous-next" or "None" (see input_values)\n |
|
add_mask_columns adds mask features before imputing missing data (see add_mask) \n |
|
episode_length is the episode length for window mode\n |
|
""" |
|
|
|
|
|
if episode_filter == None: |
|
discr_episode = episode |
|
else: |
|
discr_episode = filter_episode(episode, episode_filter) |
|
|
|
|
|
if mode == "statistics": |
|
discr_episode["episode"] = codes_to_int(discr_episode["episode"]) |
|
discr_episode["episode"] = normalize_episodes_statistics(discr_episode,column_scale=statistics_mode_column_scale) |
|
|
|
elif mode == "window": |
|
discr_episode["episode"] = normalize_episodes_window(discr_episode, window_period_length, window_size) |
|
|
|
|
|
if add_mask_columns: |
|
discr_episode["episode"] = add_mask(discr_episode["episode"]) |
|
|
|
|
|
discr_episode["episode"] = input_values(discr_episode["episode"],empty_value=empty_value,strategy=input_strategy) |
|
|
|
|
|
if mode != "statistics": |
|
if code_to_onehot: |
|
discr_episode["episode"] = codes_to_onehot(discr_episode["episode"]) |
|
else: |
|
discr_episode["episode"] = codes_to_int(discr_episode["episode"]) |
|
|
|
returned = convert_to_numpy_arrays(discr_episode, empty_value=empty_value) |
|
return returned |
|
|
|
|
|
|
|
|
|
|
|
|
|
def my_generator(dataset,transform): |
|
iterator = iter(dataset) |
|
for x in iterator: |
|
yield transform(x) |
|
|
|
def mapped_iterabledataset(dataset, function): |
|
return IterableDataset.from_generator(my_generator, gen_kwargs={"dataset": dataset,"transform":function}) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def do_listfile(task,subfolder,mimic3_benchmark_data_folder,mimic3_benchmark_new_data_folder,stays,inputevents,procedurevents,diagnoses,insurances): |
|
|
|
|
|
file = subfolder+"_listfile.csv" |
|
|
|
print("working on",task+"/"+file) |
|
|
|
listfile = pd.read_csv(os.path.join(mimic3_benchmark_data_folder,file),sep=',') |
|
listfile = listfile.sort_values(by=["stay"]) if not "period_length" in listfile else listfile.sort_values(by=["stay","period_length"]) |
|
|
|
subfolder = "train" |
|
if "test" in file: |
|
subfolder = "test" |
|
|
|
to_save = [] |
|
if task == "mimic4-in-hospital-mortality": |
|
for idx,(_,x) in enumerate(listfile.iterrows()): |
|
print(get_progression(idx,len(listfile.index),length=20),str(round(100*idx/len(listfile.index),2))+"%",file,end="\r") |
|
|
|
current_dict = {} |
|
|
|
|
|
fname = x["stay"].split("_") |
|
subject_id = fname[0] |
|
episode_number = int(fname[1][7:]) |
|
|
|
|
|
current_ep_desc = pd.read_csv(os.path.join(DATASET_SAVE_PATH,"root",subfolder,subject_id,"episode"+str(episode_number)+".csv")) |
|
icustay_id = current_ep_desc.at[current_ep_desc.index[0],"Icustay"] |
|
|
|
deathtime = stays.loc[stays["ICUSTAY_ID"] == icustay_id] |
|
dt = np.nan |
|
bd = np.nan |
|
|
|
for _,y in deathtime.iterrows(): |
|
if isinstance(y["DEATHTIME"], str) and y["DEATHTIME"] != "": |
|
dt = dtc(y["DEATHTIME"]) |
|
bd = dtc(y["INTIME"]) |
|
current_dict["age"] = y["AGE"] |
|
current_dict["ethnicity"] = y["ETHNICITY"] |
|
current_dict["gender"] = y["GENDER"] |
|
current_dict["insurance"] = insurances.loc[insurances["HADM_ID"] == y["HADM_ID"]]["INSURANCE"].iloc[0] |
|
|
|
|
|
|
|
valid = True |
|
if isinstance(dt, datetime): |
|
sec = (dt - bd).total_seconds() >= 54*3600 |
|
if sec: |
|
current_dict["label"] = 1 |
|
else: |
|
valid = False |
|
else: |
|
current_dict["label"] = 0 |
|
|
|
if not valid: |
|
continue |
|
|
|
|
|
current_diags = diagnoses[diagnoses["ICUSTAY_ID"] == icustay_id] |
|
ICD9_list = [] |
|
for _,icd_code in current_diags.iterrows(): |
|
ICD9_list.append(icd_code["ICD9_CODE"]) |
|
current_dict["Cond"] = {"fids":ICD9_list} |
|
|
|
|
|
|
|
def map_date(date): |
|
if isinstance(date,datetime): |
|
return (date - bd).total_seconds()/3600.0 |
|
else: |
|
return date |
|
|
|
|
|
|
|
pde = procedurevents[procedurevents["ICUSTAY_ID"] == icustay_id].applymap(map_date,na_action="ignore") |
|
current_dict["Proc"] = normalize_onehot_episodes_window(pde.to_dict(orient='list'), value_column=False, code_column="ITEMID", period_length=48.0, window_size=1) |
|
|
|
|
|
ie = inputevents[inputevents["ICUSTAY_ID"] == icustay_id].applymap(map_date,na_action="ignore") |
|
current_dict["Med"] = normalize_onehot_episodes_window(ie.to_dict(orient='list'), value_column=True, code_column="ITEMID", period_length=48.0, window_size=1) |
|
|
|
|
|
current_ep_charts = pd.read_csv(os.path.join(DATASET_SAVE_PATH,"in-hospital-mortality",subfolder,x["stay"])).to_dict(orient='list') |
|
current_dict["Chart"] = normalize_episodes_window({"episode":current_ep_charts}) |
|
|
|
|
|
current_dict["Out"] = {} |
|
|
|
to_save.append(current_dict) |
|
else: |
|
for idx,(_,x) in enumerate(listfile.iterrows()): |
|
print(get_progression(idx,len(listfile.index),length=20),str(round(100*idx/len(listfile.index),2))+"%",file,end="\r") |
|
to_save.append(x) |
|
|
|
|
|
|
|
os.makedirs(mimic3_benchmark_new_data_folder,exist_ok=True) |
|
with open(os.path.join(mimic3_benchmark_new_data_folder,file[:-3]+"pkl"), "wb+") as fp: |
|
pickle.dump(to_save,fp,pickle.HIGHEST_PROTOCOL) |
|
|
|
|
|
def generate_dics(diagnoses, inputevents, procedurevents, insurances, stays, mimic3_path): |
|
|
|
|
|
if not os.path.isfile(os.path.join(DATASET_SAVE_PATH,"icd_dict.csv")): |
|
print("creating icd indexes") |
|
|
|
|
|
used_col = ["ICD9_CODE","SHORT_TITLE","LONG_TITLE"] |
|
dtype = {"ICD9_CODE":str,"SHORT_TITLE":str,"LONG_TITLE":str} |
|
dcsv = pd.read_csv(mimic3_path+"/D_ICD_DIAGNOSES.csv",sep=',',usecols=used_col,dtype=dtype) |
|
print("icd ressources loaded") |
|
dic = {} |
|
for _,row in diagnoses.iterrows(): |
|
if not row["ICD9_CODE"] in dic: |
|
fif = dcsv.loc[dcsv["ICD9_CODE"] == row["ICD9_CODE"]] |
|
dic[row["ICD9_CODE"]] = {"SHORT_TITLE":fif["SHORT_TITLE"].values[0],"LONG_TITLE":fif["LONG_TITLE"].values[0]} |
|
with open(os.path.join(DATASET_SAVE_PATH,'icd_dict.csv'), 'w') as f: |
|
f.write("ICD9_CODE,SHORT_TITLE,LONG_TITLE\n") |
|
for key in dic.keys(): |
|
f.write("%s,\"%s\",\"%s\"\n"%(key,dic[key]["SHORT_TITLE"],dic[key]["LONG_TITLE"])) |
|
|
|
|
|
if not os.path.isfile(os.path.join(DATASET_SAVE_PATH,"ie_itemid_dict.csv")): |
|
print("creating itemid indexes") |
|
|
|
|
|
used_col = ["ITEMID","LABEL","ABBREVIATION"] |
|
dtype = {"ITEMID":int,"LABEL":str,"ABBREVIATION":str} |
|
itemidcsv = pd.read_csv(mimic3_path+"/D_ITEMS.csv",sep=',',usecols=used_col,dtype=dtype) |
|
|
|
print("itemid ressources loaded") |
|
dic = {} |
|
for _,row in inputevents.iterrows(): |
|
if not row["ITEMID"] in dic: |
|
fif = itemidcsv.loc[itemidcsv["ITEMID"] == row["ITEMID"]] |
|
dic[row["ITEMID"]] = {"LABEL":fif["LABEL"].values[0],"ABBREVIATION":fif["ABBREVIATION"].values[0]} |
|
with open(os.path.join(DATASET_SAVE_PATH,'ie_itemid_dict.csv'), 'w') as f: |
|
f.write("ITEMID,LABEL,ABBREVIATION\n") |
|
for key in dic.keys(): |
|
f.write("%s,\"%s\",\"%s\"\n"%(key,dic[key]["ABBREVIATION"],dic[key]["LABEL"])) |
|
|
|
dic = {} |
|
for _,row in procedurevents.iterrows(): |
|
if not row["ITEMID"] in dic: |
|
fif = itemidcsv.loc[itemidcsv["ITEMID"] == row["ITEMID"]] |
|
dic[row["ITEMID"]] = {"LABEL":fif["LABEL"].values[0],"ABBREVIATION":fif["ABBREVIATION"].values[0]} |
|
with open(os.path.join(DATASET_SAVE_PATH,'pe_itemid_dict.csv'), 'w') as f: |
|
f.write("ITEMID,LABEL,ABBREVIATION\n") |
|
for key in dic.keys(): |
|
f.write("%s,\"%s\",\"%s\"\n"%(key,dic[key]["ABBREVIATION"],dic[key]["LABEL"])) |
|
|
|
|
|
if not os.path.isfile(os.path.join(DATASET_SAVE_PATH,"insurances_dict.csv")): |
|
print("creating insurances indexes") |
|
dic = {} |
|
index = 0 |
|
for _,row in insurances.iterrows(): |
|
if not row["INSURANCE"] in dic: |
|
dic[row["INSURANCE"]] = index |
|
index += 1 |
|
with open(os.path.join(DATASET_SAVE_PATH,'insurances_dict.csv'), 'w') as f: |
|
f.write("INSURANCE,INDEX\n") |
|
for key in dic.keys(): |
|
f.write("\"%s\",%s\n"%(key,dic[key])) |
|
|
|
|
|
if not os.path.isfile(os.path.join(DATASET_SAVE_PATH,"genders_dict.csv")): |
|
print("creating genders indexes") |
|
dic = {} |
|
index = 0 |
|
for _,row in stays.iterrows(): |
|
if not row["GENDER"] in dic: |
|
dic[row["GENDER"]] = index |
|
index += 1 |
|
with open(os.path.join(DATASET_SAVE_PATH,'genders_dict.csv'), 'w') as f: |
|
f.write("GENDER,INDEX\n") |
|
for key in dic.keys(): |
|
f.write("\"%s\",%s\n"%(key,dic[key])) |
|
|
|
|
|
|
|
if not os.path.isfile(os.path.join(DATASET_SAVE_PATH,"ages_dict.csv")): |
|
print("creating ages indexes") |
|
dic = {} |
|
index = 0 |
|
for _,row in stays.iterrows(): |
|
if not round(row["AGE"]) in dic: |
|
dic[round(row["AGE"])] = index |
|
index += 1 |
|
with open(os.path.join(DATASET_SAVE_PATH,'ages_dict.csv'), 'w') as f: |
|
f.write("AGE,INDEX\n") |
|
for key in dic.keys(): |
|
f.write("%s,%s\n"%(key,dic[key])) |
|
|
|
|
|
if not os.path.isfile(os.path.join(DATASET_SAVE_PATH,"ethnicities_dict.csv")): |
|
print("creating ethnicities indexes") |
|
dic = {} |
|
index = 0 |
|
for _,row in stays.iterrows(): |
|
if not row["ETHNICITY"] in dic: |
|
dic[row["ETHNICITY"]] = index |
|
index += 1 |
|
with open(os.path.join(DATASET_SAVE_PATH,'ethnicities_dict.csv'), 'w') as f: |
|
f.write("ETHNICITY,INDEX\n") |
|
for key in dic.keys(): |
|
f.write("\"%s\",%s\n"%(key,dic[key])) |
|
|
|
def clean_units(df): |
|
df.loc[df["AMOUNTUOM"].isin(["grams","L"]),"AMOUNT"] = df.loc[df["AMOUNTUOM"].isin(["grams","L"]),"AMOUNT"].apply((lambda x:x*1000)) |
|
df.loc[df["AMOUNTUOM"].isin(["ounces"]),"AMOUNT"] = df.loc[df["AMOUNTUOM"].isin(["ounces"]),"AMOUNT"].apply((lambda x:x*28.3495*1000)) |
|
df.loc[df["AMOUNTUOM"].isin(["uL"]),"AMOUNT"] = df.loc[df["AMOUNTUOM"].isin(["uL"]),"AMOUNT"].apply((lambda x:x/1000)) |
|
df.loc[df["AMOUNTUOM"].isin(["mlhr","Hours"]),"AMOUNT"] = df.loc[df["AMOUNTUOM"].isin(["mlhr","Hours"]),"AMOUNT"].apply((lambda x:x/60)) |
|
|
|
df.loc[df["RATEUOM"].isin(["mLhour","unitshour","mcghour","mcgkghour","mgkghour","mLkghour","mEq.hour"]),"RATE"] = df.loc[df["RATEUOM"].isin(["mLhour","unitshour","mcghour","mcgkghour","mgkghour","mLkghour","mEq.hour"]),"RATE"].apply((lambda x:x/60)) |
|
df.loc[df["RATEUOM"].isin(["gramshour"]),"RATE"] = df.loc[df["RATEUOM"].isin(["gramshour"]),"RATE"].apply((lambda x:x*1000/60)) |
|
df.loc[df["RATEUOM"].isin(["gramsmin","gramskgmin"]),"RATE"] = df.loc[df["RATEUOM"].isin(["gramsmin","gramskgmin"]),"RATE"].apply((lambda x:x*1000)) |
|
|
|
|
|
def load_mimic3_files(mimic3_dir): |
|
|
|
used_col = ["SUBJECT_ID","ICUSTAY_ID","CHARTTIME","ITEMID","AMOUNT","AMOUNTUOM","RATE","RATEUOM"] |
|
dtype = {"AMOUNTUOM":str,"RATEUOM":str} |
|
converters={"SUBJECT_ID":bic,"ICUSTAY_ID":bic,"CHARTTIME":dtc,"ITEMID":bic,"AMOUNT":bfc,"RATE":bfc} |
|
inputevents = pd.read_csv(mimic3_dir+"/INPUTEVENTS_CV.csv",sep=',',usecols=used_col,dtype=dtype,converters=converters) |
|
inputevents.rename(columns={"CHARTTIME": "STARTTIME"}, inplace=True) |
|
print("inputevents 1/2 loaded") |
|
|
|
used_col = ["SUBJECT_ID","ICUSTAY_ID","STARTTIME","ENDTIME","ITEMID","AMOUNT","AMOUNTUOM","RATE","RATEUOM"] |
|
dtype = {"AMOUNTUOM":str,"RATEUOM":str} |
|
converters={"SUBJECT_ID":bic,"ICUSTAY_ID":bic,"STARTTIME":dtc,"ENDTIME":dtc,"ITEMID":bic,"AMOUNT":bfc,"RATE":bfc} |
|
inputevents_2 = pd.read_csv(mimic3_dir+"/INPUTEVENTS_MV.csv",sep=',',usecols=used_col,dtype=dtype,converters=converters) |
|
inputevents = pd.concat([inputevents,inputevents_2]) |
|
inputevents.drop(inputevents[(inputevents["SUBJECT_ID"] == -1) | (inputevents["ICUSTAY_ID"] == -1)].index, inplace=True) |
|
clean_units(inputevents) |
|
print("inputevents 2/2 loaded") |
|
|
|
|
|
used_col = ["SUBJECT_ID","ICUSTAY_ID","STARTTIME","ENDTIME","ITEMID"] |
|
converters={"SUBJECT_ID":bic,"ICUSTAY_ID":bic,"STARTTIME":dtc,"ENDTIME":dtc,"ITEMID":bic} |
|
procedurevents = pd.read_csv(mimic3_dir+"/PROCEDUREEVENTS_MV.csv",sep=',',usecols=used_col,converters=converters) |
|
procedurevents.drop(procedurevents[(procedurevents["SUBJECT_ID"] == -1) | (procedurevents["ICUSTAY_ID"] == -1)].index, inplace=True) |
|
print("procedurevents loaded") |
|
|
|
|
|
used_col = ["SUBJECT_ID","SEQ_NUM","ICD9_CODE","ICUSTAY_ID"] |
|
dtype = {"ICD9_CODE":str} |
|
converters={"SUBJECT_ID":bic,"SEQ_NUM":bic,"ICUSTAY_ID":bic} |
|
diagnoses = pd.read_csv(os.path.join(DATASET_SAVE_PATH,"root","all_diagnoses.csv"),sep=',',usecols=used_col,dtype=dtype,converters=converters) |
|
print("diagnoses loaded") |
|
|
|
|
|
used_col = ["SUBJECT_ID","HADM_ID","ICUSTAY_ID","INTIME","DEATHTIME","ETHNICITY","GENDER","AGE"] |
|
dtype = {"INTIME":str,"DEATHTIME":str,"ETHNICITY":str,"GENDER":str} |
|
converters={"SUBJECT_ID":bic,"HADM_ID":bic,"ICUSTAY_ID":bic,"AGE":bfc} |
|
stays = pd.read_csv(os.path.join(DATASET_SAVE_PATH,"root","all_stays.csv"),sep=',',usecols=used_col,dtype=dtype,converters=converters) |
|
print("stays loaded") |
|
|
|
|
|
used_col = ["SUBJECT_ID","HADM_ID","INSURANCE"] |
|
dtype = {"INSURANCE":str} |
|
converters={"SUBJECT_ID":bic,"HADM_ID":bic} |
|
insurances = pd.read_csv(mimic3_dir+"/ADMISSIONS.csv",sep=',',usecols=used_col,dtype=dtype,converters=converters) |
|
print("insurances loaded") |
|
|
|
generate_dics(diagnoses, inputevents, procedurevents, insurances, stays, mimic3_dir) |
|
|
|
diagnoses.drop(diagnoses[(diagnoses["SUBJECT_ID"] == -1) | (diagnoses["ICUSTAY_ID"] == -1)].index, inplace=True) |
|
diagnoses.drop(diagnoses[(diagnoses["ICD9_CODE"] == 7981) | (diagnoses["ICD9_CODE"] == 7982) | (diagnoses["ICD9_CODE"] == 7989)].index, inplace=True) |
|
diagnoses["Hours"] = 0 |
|
diagnoses = diagnoses.sort_values(by="SEQ_NUM") |
|
|
|
return stays,inputevents,procedurevents,diagnoses,insurances |
|
|
|
|
|
|
|
def do_directory_cleaning(current_file): |
|
|
|
if "IC9_CODE" in current_file: |
|
current_file["ICD9_CODE"] = current_file["ICD9_CODE"].apply(id_to_string) |
|
|
|
|
|
current_file.loc[current_file["AMOUNT"] == -1, "AMOUNT"] = np.nan |
|
current_file.loc[current_file["RATE"] == -1, "RATE"] = np.nan |
|
current_file["ITEMID"] = current_file["ITEMID"].astype(pd.Int64Dtype()) |
|
if "SEQ_NUM" in current_file: |
|
current_file["SEQ_NUM"] = current_file["SEQ_NUM"].astype(pd.Int64Dtype()) |
|
clean_units(current_file) |
|
current_file = current_file.drop(["AMOUNTUOM","RATEUOM"], axis=1) |
|
return current_file |
|
|
|
|
|
def load_mimic3_benchmark(mimic3_path): |
|
|
|
mimic3_path = os.path.join(os.getcwd(),mimic3_path) |
|
starting_dir = os.getcwd() |
|
os.chdir(DATASET_SAVE_PATH) |
|
|
|
print("Starting preprocessing of raw mimic3 data...") |
|
|
|
if not os.path.isdir("mimic3-benchmarks"): |
|
print("MIMIC3-BENCHMARK Data not found... Loading mimic3-benchmark github...") |
|
os.system('git clone https://github.com/YerevaNN/mimic3-benchmarks.git') |
|
|
|
if not os.path.isdir("mimic3-benchmarks"): |
|
print("Could not load the github... Exiting...") |
|
exit(1) |
|
os.chdir("mimic3-benchmarks") |
|
print("Preprocessing of data... This step may take hours.") |
|
|
|
print("Extracting subjects...") |
|
os.system("python -m mimic3benchmark.scripts.extract_subjects "+mimic3_path+" ../root/") |
|
|
|
print("Fixing issues...") |
|
os.system("python -m mimic3benchmark.scripts.validate_events ../root/") |
|
|
|
print("Extracting episodes...") |
|
os.system("python -m mimic3benchmark.scripts.extract_episodes_from_subjects ../root/") |
|
|
|
print("Spliting train and test...") |
|
os.system("python -m mimic3benchmark.scripts.split_train_and_test ../root/") |
|
|
|
print("Creating specific tasks") |
|
os.system("python -m mimic3benchmark.scripts.create_in_hospital_mortality ../root/ ../in-hospital-mortality/") |
|
os.system("python -m mimic3benchmark.scripts.create_decompensation ../root/ ../decompensation/") |
|
os.system("python -m mimic3benchmark.scripts.create_length_of_stay ../root/ ../length-of-stay/") |
|
os.system("python -m mimic3benchmark.scripts.create_phenotyping ../root/ ../phenotyping/") |
|
os.system("python -m mimic3benchmark.scripts.create_multitask ../root/ ../multitask/") |
|
|
|
print("Spliting validation...") |
|
os.system("python -m mimic3models.split_train_val ../in-hospital-mortality/") |
|
os.system("python -m mimic3models.split_train_val ../decompensation/") |
|
os.system("python -m mimic3models.split_train_val ../length-of-stay/") |
|
os.system("python -m mimic3models.split_train_val ../phenotyping/") |
|
os.system("python -m mimic3models.split_train_val ../multitask/") |
|
os.chdir(starting_dir) |
|
|
|
def preprocess(task,mimic3_dir=None): |
|
origin_task = task |
|
if "mimic4-" in task: |
|
origin_task = task[7:] |
|
|
|
original_task_path = os.path.join(DATASET_SAVE_PATH,origin_task) |
|
print("need of",original_task_path,"to generate new task...") |
|
if not os.path.isdir(original_task_path): |
|
if mimic3_dir == None: |
|
mimic3_dir = input("Preprocessing has to be done, please enter mimic3's path : ") |
|
if not os.path.isdir(mimic3_dir): |
|
print("Could not load mimic3 files...") |
|
exit(1) |
|
load_mimic3_benchmark(mimic3_dir) |
|
|
|
loaded,inputevents,procedurevents,diagnoses = False,None,None,None |
|
|
|
mimic3_benchmark_data_folder,mimic3_benchmark_new_data_folder = None,None |
|
if "mimic4-" in task: |
|
print("the requested task is a mimic4-benchmark task...") |
|
|
|
mimic3_benchmark_data_folder = os.path.join(DATASET_SAVE_PATH,task[7:]) |
|
|
|
|
|
mimic3_benchmark_new_data_folder = os.path.join(DATASET_SAVE_PATH,task) |
|
|
|
|
|
for subfolder in ["train","test","val"]: |
|
print("checking subfolder",subfolder) |
|
|
|
|
|
if not os.path.isfile(os.path.join(DATASET_SAVE_PATH,task,subfolder+"_listfile.pkl")): |
|
if not loaded: |
|
if mimic3_dir == None: |
|
mimic3_dir = input("preprocessing has to be done, please enter mimic3's path : ") |
|
if not os.path.isdir(mimic3_dir): |
|
print("Could not load mimic3 files...") |
|
exit(1) |
|
print("this task does not exist yet... loading required files to create the task. this may take 20 minutes") |
|
stays,inputevents,procedurevents,diagnoses,insurances = load_mimic3_files(mimic3_dir) |
|
loaded = True |
|
print("creating the subfolder",subfolder,"| estimated time : 1h") |
|
do_listfile(task, subfolder, mimic3_benchmark_data_folder, mimic3_benchmark_new_data_folder, stays, inputevents, procedurevents, diagnoses, insurances) |
|
if not os.path.isfile("icd_dict.csv"): |
|
if mimic3_dir == None: |
|
mimic3_dir = input("preprocessing has to be done, please enter mimic3's path : ") |
|
if not os.path.isdir(mimic3_dir): |
|
print("Could not load mimic3 files...") |
|
exit(1) |
|
print("loading data and creating dicts...") |
|
load_mimic3_files(mimic3_dir) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Mimic3DatasetConfig(datasets.BuilderConfig): |
|
def __init__(self, **kwargs): |
|
super().__init__(**kwargs) |
|
|
|
class Mimic3Benchmark_Dataset(datasets.GeneratorBasedBuilder): |
|
def __init__(self, **kwargs): |
|
self.code_to_onehot=kwargs.pop("code_to_onehot",True) |
|
self.episode_filter=kwargs.pop("episode_filter",None) |
|
self.mode=kwargs.pop("mode","statistics") |
|
self.window_period_length=kwargs.pop("window_period_length",48.0) |
|
self.window_size=kwargs.pop("window_size",0.7) |
|
self.empty_value=kwargs.pop("empty_value",np.nan) |
|
self.input_strategy=kwargs.pop("input_strategy",None) |
|
self.add_mask_columns=kwargs.pop("add_mask_columns",False) |
|
self.statistics_mode_column_scale=kwargs.pop("statistics_mode_column_scale",True) |
|
self.mimic3_path=kwargs.pop("mimic3_path",None) |
|
|
|
self.mimic4_text_demos = kwargs.pop("mimic4_text_demos",True) |
|
self.mimic4_text_charts = kwargs.pop("mimic4_text_charts",True) |
|
self.mimic4_text_meds = kwargs.pop("mimic4_text_meds",True) |
|
self.mimic4_text_cond = kwargs.pop("mimic4_text_cond",True) |
|
self.mimic4_text_procs = kwargs.pop("mimic4_text_procs",True) |
|
|
|
self.full_meds_loaded = False |
|
self.full_proc_loaded = False |
|
self.full_cond_loaded = False |
|
|
|
self.full_gens_loaded = False |
|
self.full_ages_loaded = False |
|
self.full_eths_loaded = False |
|
self.full_ins_loaded = False |
|
|
|
super().__init__(**kwargs) |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
Mimic3DatasetConfig(name="in-hospital-mortality", version=VERSION, description="This datasets covers the in-hospital-mortality benchmark of mimiciii-benchmark"), |
|
Mimic3DatasetConfig(name="decompensation", version=VERSION, description="This datasets covers the decompensation benchmark of mimiciii-benchmark"), |
|
Mimic3DatasetConfig(name="length-of-stay", version=VERSION, description="This datasets covers the length-of-stay benchmark of mimiciii-benchmark"), |
|
Mimic3DatasetConfig(name="multitask", version=VERSION, description="This datasets covers the multitask benchmark of mimiciii-benchmark"), |
|
Mimic3DatasetConfig(name="phenotyping", version=VERSION, description="This datasets covers the in phenotyping benchmark of mimiciii-benchmark"), |
|
Mimic3DatasetConfig(name="mimic4-in-hospital-mortality", version=VERSION, description="This datasets covers the mimic4-in-hospital-mortality benchmark of mimiciii-benchmark"), |
|
] |
|
|
|
def _info(self): |
|
if self.config.name in ["in-hospital-mortality", "decompensation", "phenotyping", "mimic4-in-hospital-mortality", "length-of-stay"]: |
|
|
|
|
|
|
|
if self.config.name == "phenotyping": |
|
return datasets.DatasetInfo( |
|
description="Dataset "+self.config.name, |
|
features=datasets.Features( |
|
{ |
|
"Acute and unspecified renal failure": datasets.Value("float"), |
|
"Acute cerebrovascular disease": datasets.Value("float"), |
|
"Acute myocardial infarction": datasets.Value("float"), |
|
"Cardiac dysrhythmias": datasets.Value("float"), |
|
"Chronic kidney disease": datasets.Value("float"), |
|
"Chronic obstructive pulmonary disease and bronchiectasis": datasets.Value("float"), |
|
"Complications of surgical procedures or medical care": datasets.Value("float"), |
|
"Conduction disorders": datasets.Value("float"), |
|
"Congestive heart failure; nonhypertensive": datasets.Value("float"), |
|
"Coronary atherosclerosis and other heart disease": datasets.Value("float"), |
|
"Diabetes mellitus with complications": datasets.Value("float"), |
|
"Diabetes mellitus without complication": datasets.Value("float"), |
|
"Disorders of lipid metabolism": datasets.Value("float"), |
|
"Essential hypertension": datasets.Value("float"), |
|
"Fluid and electrolyte disorders": datasets.Value("float"), |
|
"Gastrointestinal hemorrhage": datasets.Value("float"), |
|
"Hypertension with complications and secondary hypertension": datasets.Value("float"), |
|
"Other liver diseases": datasets.Value("float"), |
|
"Other lower respiratory disease": datasets.Value("float"), |
|
"Other upper respiratory disease": datasets.Value("float"), |
|
"Pleurisy; pneumothorax; pulmonary collapse": datasets.Value("float"), |
|
"Pneumonia (except that caused by tuberculosis or sexually transmitted disease)": datasets.Value("float"), |
|
"Respiratory failure; insufficiency; arrest (adult)": datasets.Value("float"), |
|
"Septicemia (except in labor)": datasets.Value("float"), |
|
"Shock": datasets.Value("float"), |
|
"episode": datasets.Array2D(shape=(None,None), dtype=float) |
|
}), |
|
homepage="", |
|
license="", |
|
citation="", |
|
) |
|
elif self.config.name == "mimic4-in-hospital-mortality" and self.mode in ["mimic4-aggreg"]: |
|
return datasets.DatasetInfo( |
|
description="Dataset "+self.config.name, |
|
features = datasets.Features( |
|
{ |
|
"label": datasets.ClassLabel(num_classes=2,names=["0", "1"]), |
|
"features" : datasets.Sequence(datasets.Value("float32")), |
|
"columns": datasets.Squence(datasets.value("string")) |
|
} |
|
), |
|
homepage="", |
|
license="", |
|
citation="",) |
|
elif self.config.name == "mimic4-in-hospital-mortality" and self.mode == "mimic4-naive-prompt": |
|
return datasets.DatasetInfo( |
|
description="Dataset "+self.config.name, |
|
features = datasets.Features( |
|
{ |
|
"label": datasets.ClassLabel(num_classes=2,names=["0", "1"]), |
|
"features" : datasets.Value(dtype='string', id=None), |
|
} |
|
), |
|
homepage="", |
|
license="", |
|
citation="",) |
|
elif self.config.name == "mimic4-in-hospital-mortality" and self.mode == "mimic4-tensor": |
|
return datasets.DatasetInfo( |
|
description="Dataset "+self.config.name, |
|
features = datasets.Features( |
|
{ |
|
"label": datasets.ClassLabel(num_classes=2,names=["0", "1"]), |
|
"DEMO": datasets.Sequence(datasets.Value("int64")), |
|
"COND" : datasets.Sequence(datasets.Value("int64")), |
|
"MEDS" : datasets.Array2D(shape=(None, None), dtype='int64') , |
|
"PROC" : datasets.Array2D(shape=(None, None), dtype='int64') , |
|
"CHART/LAB" : datasets.Array2D(shape=(None, None), dtype='int64') |
|
} |
|
), |
|
homepage="", |
|
license="", |
|
citation="",) |
|
return datasets.DatasetInfo( |
|
description="Dataset "+self.config.name, |
|
features=datasets.Features( |
|
{ |
|
"y_true": datasets.Value("float"), |
|
"episode": datasets.Array2D(shape=(None,None), dtype=float) |
|
}), |
|
homepage="", |
|
license="", |
|
citation="", |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
self.path = os.path.join(DATASET_SAVE_PATH,self.config.name) |
|
preprocess(self.config.name,self.mimic3_path) |
|
if "mimic4" in self.config.name: |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath":os.path.join(self.path,"train_listfile.pkl"), |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath":os.path.join(self.path,"val_listfile.pkl"), |
|
"split": "validation", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath":os.path.join(self.path,"test_listfile.pkl"), |
|
"split": "test" |
|
}, |
|
), |
|
] |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath":os.path.join(self.path,"train_listfile.csv"), |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath":os.path.join(self.path,"val_listfile.csv"), |
|
"split": "validation", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath":os.path.join(self.path,"test_listfile.csv"), |
|
"split": "test" |
|
}, |
|
), |
|
] |
|
|
|
def _generate_exemples_CHARTONLY(self, filepath): |
|
key = 0 |
|
with open(filepath, encoding="utf-8") as f: |
|
reader1 = csv.DictReader(f) |
|
for data in reader1: |
|
|
|
y_trues = {} |
|
|
|
for e in data: |
|
if e != "period_length" and e != "stay": |
|
y_trues[e] = data[e] |
|
|
|
if "period_length" in data: |
|
period_length = float(data["period_length"]) |
|
else: |
|
period_length = self.window_period_length |
|
stay = data["stay"] |
|
|
|
if os.path.isfile(os.path.join(self.path,"test",stay)): |
|
stay = os.path.join(self.path,"test",stay) |
|
else: |
|
stay = os.path.join(self.path,"train",stay) |
|
|
|
|
|
|
|
episode = { |
|
"Hours": [], |
|
"Capillary refill rate": [], |
|
"Diastolic blood pressure": [], |
|
"Fraction inspired oxygen": [], |
|
"Glascow coma scale eye opening": [], |
|
"Glascow coma scale motor response": [], |
|
"Glascow coma scale total": [], |
|
"Glascow coma scale verbal response": [], |
|
"Glucose": [], |
|
"Heart Rate": [], |
|
"Height": [], |
|
"Mean blood pressure": [], |
|
"Oxygen saturation": [], |
|
"Respiratory rate": [], |
|
"Systolic blood pressure": [], |
|
"Temperature": [], |
|
"Weight": [], |
|
"pH": [], |
|
} |
|
with open(stay, encoding="utf-8") as f2: |
|
reader2 = csv.DictReader(f2) |
|
for data2 in reader2: |
|
if self.config.name in ["length-of-stay","decompensation"] and float(data2["Hours"]) > period_length + 1e-6: |
|
break |
|
|
|
episode["Hours"].append(float(data2["Hours"]) if data2["Hours"] else 0.0) |
|
episode["Capillary refill rate"].append(float(data2["Capillary refill rate"]) if data2["Capillary refill rate"] else np.nan) |
|
episode["Diastolic blood pressure"].append(float(data2["Diastolic blood pressure"]) if data2["Diastolic blood pressure"] else np.nan) |
|
episode["Fraction inspired oxygen"].append(float(data2["Fraction inspired oxygen"]) if data2["Fraction inspired oxygen"] else np.nan) |
|
episode["Glascow coma scale eye opening"].append(data2["Glascow coma scale eye opening"]) |
|
episode["Glascow coma scale motor response"].append(data2["Glascow coma scale motor response"]) |
|
episode["Glascow coma scale total"].append(float(data2["Glascow coma scale total"]) if data2["Glascow coma scale total"] else np.nan) |
|
episode["Glascow coma scale verbal response"].append(data2["Glascow coma scale verbal response"]) |
|
episode["Glucose"].append(float(data2["Glucose"]) if data2["Glucose"] else np.nan) |
|
episode["Heart Rate"].append(float(data2["Heart Rate"]) if data2["Heart Rate"] else np.nan) |
|
episode["Height"].append(float(data2["Height"]) if data2["Height"] else np.nan) |
|
episode["Mean blood pressure"].append(float(data2["Mean blood pressure"]) if data2["Mean blood pressure"] else np.nan) |
|
episode["Oxygen saturation"].append(float(data2["Oxygen saturation"]) if data2["Oxygen saturation"] else np.nan) |
|
episode["Respiratory rate"].append(float(data2["Respiratory rate"]) if data2["Respiratory rate"] else np.nan) |
|
episode["Systolic blood pressure"].append(float(data2["Systolic blood pressure"]) if data2["Systolic blood pressure"] else np.nan) |
|
episode["Temperature"].append(float(data2["Temperature"]) if data2["Temperature"] else np.nan) |
|
episode["Weight"].append(float(data2["Weight"]) if data2["Weight"] else np.nan) |
|
episode["pH"].append(float(data2["pH"]) if data2["pH"] else np.nan) |
|
|
|
X,Y = preprocess_to_learn( |
|
{ |
|
"episode":episode |
|
}, |
|
code_to_onehot=self.code_to_onehot, |
|
episode_filter=self.episode_filter, |
|
mode=self.mode, |
|
window_size=self.window_size, |
|
empty_value=self.empty_value, |
|
input_strategy=self.input_strategy, |
|
add_mask_columns=self.add_mask_columns, |
|
statistics_mode_column_scale=self.statistics_mode_column_scale, |
|
window_period_length=period_length |
|
) |
|
|
|
|
|
y_trues["episode"] = X |
|
yield key, y_trues |
|
key += 1 |
|
|
|
|
|
|
|
|
|
|
|
def load_vocab(self): |
|
if self.full_gens_loaded == False: |
|
self.full_gens = pd.read_csv(os.path.join(DATASET_SAVE_PATH,"genders_dict.csv"))["GENDER"].tolist() |
|
self.full_gens_loaded = True |
|
self.full_gens_len = len(self.full_gens) |
|
self.full_gens_reverse = {k: v for v, k in enumerate(self.full_gens)} |
|
|
|
if self.full_eths_loaded == False: |
|
self.full_eths = pd.read_csv(os.path.join(DATASET_SAVE_PATH,"ethnicities_dict.csv"))["ETHNICITY"].tolist() |
|
self.full_eths_loaded = True |
|
self.full_eths_len = len(self.full_eths) |
|
self.full_eths_reverse = {k: v for v, k in enumerate(self.full_eths)} |
|
|
|
if self.full_ins_loaded == False: |
|
self.full_ins = pd.read_csv(os.path.join(DATASET_SAVE_PATH,"insurances_dict.csv"))["INSURANCE"].tolist() |
|
self.full_ins_loaded = True |
|
self.full_ins_len = len(self.full_ins) |
|
self.full_ins_reverse = {k: v for v, k in enumerate(self.full_ins)} |
|
|
|
if self.full_cond_loaded == False: |
|
self.full_cond = pd.read_csv(os.path.join(DATASET_SAVE_PATH,"icd_dict.csv"),names=["COND","SHORT","LONG"],skiprows=1) |
|
self.full_cond_loaded = True |
|
self.full_cond_len = len(self.full_cond) |
|
|
|
if self.full_proc_loaded == False: |
|
self.full_proc = pd.read_csv(os.path.join(DATASET_SAVE_PATH,"pe_itemid_dict.csv"),names=["PROC","SHORT","LONG"],skiprows=1) |
|
self.full_proc_loaded = True |
|
self.full_proc_len = len(self.full_proc["PROC"]) |
|
|
|
if self.full_meds_loaded == False: |
|
self.full_meds = pd.read_csv(os.path.join(DATASET_SAVE_PATH,"ie_itemid_dict.csv"),names=["MEDS","LONG","SHORT"],skiprows=1) |
|
self.full_meds_loaded = True |
|
self.full_meds_len = len(self.full_meds["MEDS"]) |
|
|
|
if self.full_ages_loaded == False: |
|
self.full_ages = pd.read_csv(os.path.join(DATASET_SAVE_PATH,"ages_dict.csv"),names=["AGE","INDEX"],skiprows=1)["AGE"] |
|
self.full_ages_loaded = True |
|
self.full_ages_len = len(self.full_ages) |
|
self.full_ages_reverse = {k: v for v, k in enumerate(self.full_ages)} |
|
self.chartDic = pd.DataFrame({"CHART":["Capillary refill rate","Diastolic blood pressure","Fraction inspired oxygen","Glascow coma scale eye opening","Glascow coma scale motor response","Glascow coma scale total","Glascow coma scale verbal response","Glucose","Heart Rate","Height","Mean blood pressure","Oxygen saturation","Respiratory rate","Systolic blood pressure","Temperature","Weight","pH"]}) |
|
|
|
def generate_deep(self,data): |
|
dyn,cond_df,demo=self.concat_data(data) |
|
charts = dyn['CHART'].values |
|
|
|
meds = dyn['MEDS'].values |
|
|
|
proc = dyn['PROC'].values |
|
|
|
stat = cond_df.values[0] |
|
|
|
y = int(demo['label']) |
|
demo["gender"].replace(self.full_gens_reverse, inplace=True) |
|
demo["ethnicity"].replace(self.full_eths_reverse, inplace=True) |
|
demo["insurance"].replace(self.full_ins_reverse, inplace=True) |
|
demo["Age"] = demo["Age"].round() |
|
demo["insurance"].replace(self.full_ages_reverse, inplace=True) |
|
|
|
demo = demo[["gender","ethnicity","insurance","Age"]].values[0] |
|
return stat, demo, meds, charts, proc, y |
|
|
|
|
|
def _generate_examples_deep(self, filepath): |
|
|
|
self.load_vocab() |
|
|
|
with open(filepath, 'rb') as fp: |
|
dico = pickle.load(fp) |
|
|
|
for key, data in enumerate(dico): |
|
stat, demo, meds, chart, proc, y = self.generate_deep(data) |
|
yielded = { |
|
'label': y, |
|
'DEMO': demo, |
|
'COND': stat, |
|
'MEDS': meds, |
|
'PROC': proc, |
|
'CHART/LAB': chart, |
|
} |
|
yield int(key), yielded |
|
|
|
|
|
|
|
|
|
|
|
def concat_data(self,data): |
|
meds = data['Med'] |
|
proc = data['Proc'] |
|
chart = codes_to_int(input_values(data['Chart'])) |
|
cond = data['Cond']['fids'] |
|
|
|
cond_df,proc_df,chart_df,meds_df=pd.DataFrame(),pd.DataFrame(),pd.DataFrame(),pd.DataFrame() |
|
|
|
|
|
demo=pd.DataFrame(columns=['Age','gender','ethnicity','label','insurance']) |
|
new_row = {'Age': data['age'], 'gender': data['gender'], 'ethnicity': data['ethnicity'], 'label': data['label'], 'insurance': data['insurance']} |
|
demo = demo.append(new_row, ignore_index=True) |
|
|
|
|
|
|
|
|
|
features=pd.DataFrame(np.zeros([1,len(self.full_cond)]),columns=self.full_cond['COND']) |
|
|
|
|
|
|
|
cond_df = pd.DataFrame(cond,columns=['COND']) |
|
cond_df['val'] = 1 |
|
cond_df = (cond_df.drop_duplicates()).pivot(columns='COND',values='val').reset_index(drop=True) |
|
cond_df = cond_df.fillna(0) |
|
oneh = cond_df.sum().to_frame().T |
|
combined_df = pd.concat([features,oneh],ignore_index=True).fillna(0) |
|
combined_oneh = combined_df.sum().to_frame().T |
|
cond_df = combined_oneh |
|
for c in cond_df.columns : |
|
if c not in features: |
|
cond_df = cond_df.drop(columns=[c]) |
|
|
|
|
|
|
|
|
|
feat=proc.keys() |
|
proc_val=[proc[key] for key in feat] |
|
procedures=pd.DataFrame(self.full_proc["PROC"],columns=['PROC']) |
|
features=pd.DataFrame(np.zeros([1,len(procedures)]),columns=procedures['PROC']) |
|
features.columns=pd.MultiIndex.from_product([["PROC"], features.columns]) |
|
procs=pd.DataFrame(columns=feat) |
|
for p,v in zip(feat,proc_val): |
|
procs[p]=v |
|
procs.columns=pd.MultiIndex.from_product([["PROC"], procs.columns]) |
|
proc_df = pd.concat([features,procs],ignore_index=True).fillna(0) |
|
|
|
|
|
|
|
|
|
|
|
feat=chart.keys() |
|
chart_val=[chart[key] for key in feat] |
|
charts=pd.DataFrame(self.chartDic,columns=['CHART']) |
|
features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['CHART']) |
|
features.columns=pd.MultiIndex.from_product([["CHART"], features.columns]) |
|
|
|
chart=pd.DataFrame(columns=feat) |
|
for c,v in zip(feat,chart_val): |
|
chart[c]=v |
|
chart.columns=pd.MultiIndex.from_product([["CHART"], chart.columns]) |
|
chart_df = pd.concat([features,chart],ignore_index=True).fillna(0) |
|
|
|
|
|
|
|
feat=[str(x) for x in meds.keys()] |
|
med_val=[meds[int(key)] for key in feat] |
|
meds=[str(x) for x in self.full_meds["MEDS"]] |
|
features=pd.DataFrame(np.zeros([1,len(meds)]),columns=meds) |
|
features.columns=pd.MultiIndex.from_product([["MEDS"], features.columns]) |
|
med=pd.DataFrame(columns=feat) |
|
for m,v in zip(feat,med_val): |
|
med[m]=v |
|
med.columns=pd.MultiIndex.from_product([["MEDS"], med.columns]) |
|
|
|
meds_df = pd.concat([features,med],ignore_index=True).fillna(0) |
|
dyn_df = pd.concat([meds_df,proc_df,chart_df], axis=1) |
|
return dyn_df,cond_df,demo |
|
|
|
def _generate_ml(self,dyn,stat,demo,concat_cols,concat): |
|
X_df=pd.DataFrame() |
|
if concat: |
|
dyna=dyn.copy() |
|
dyna.columns=dyna.columns.droplevel(0) |
|
dyna=dyna.to_numpy() |
|
dyna=np.nan_to_num(dyna, copy=False) |
|
dyna=dyna.reshape(1,-1) |
|
|
|
dyn_df=pd.DataFrame(data=dyna) |
|
else: |
|
dyn_df=pd.DataFrame() |
|
for key in dyn.columns.levels[0]: |
|
dyn_temp=dyn[key] |
|
if ((key=="CHART") or (key=="MEDS")): |
|
agg=dyn_temp.aggregate("mean") |
|
agg=agg.reset_index() |
|
else: |
|
agg=dyn_temp.aggregate("max") |
|
agg=agg.reset_index() |
|
|
|
if dyn_df.empty: |
|
dyn_df=agg |
|
else: |
|
dyn_df=pd.concat([dyn_df,agg],axis=0) |
|
dyn_df=dyn_df.T |
|
dyn_df.columns = dyn_df.iloc[0] |
|
dyn_df=dyn_df.iloc[1:,:] |
|
|
|
X_df=pd.concat([dyn_df,stat],axis=1) |
|
X_df=pd.concat([X_df,demo],axis=1) |
|
return X_df |
|
|
|
|
|
def _generate_examples_encoded(self, filepath, concat): |
|
self.load_vocab() |
|
|
|
gen_encoder,eth_encoder,ins_encoder = LabelEncoder(),LabelEncoder(),LabelEncoder() |
|
|
|
gen_encoder.fit(self.full_gens) |
|
eth_encoder.fit(self.full_eths) |
|
ins_encoder.fit(self.full_ins) |
|
with open(filepath, 'rb') as fp: |
|
dico = pickle.load(fp) |
|
df = pd.DataFrame(dico) |
|
|
|
for i, data in df.iterrows(): |
|
concat_cols=[] |
|
dyn_df,cond_df,demo=self.concat_data(data) |
|
dyn=dyn_df.copy() |
|
dyn.columns=dyn.columns.droplevel(0) |
|
cols=dyn.columns |
|
time=dyn.shape[0] |
|
|
|
|
|
|
|
demo['gender']=gen_encoder.transform(demo['gender']) |
|
demo['ethnicity']=eth_encoder.transform(demo['ethnicity']) |
|
demo['insurance']=ins_encoder.transform(demo['insurance']) |
|
label = data['label'] |
|
demo = demo.drop(['label'],axis=1) |
|
X = self._generate_ml(dyn = dyn_df, stat = cond_df, demo = demo, concat_cols = concat_cols, concat = concat) |
|
columns = X.columns |
|
X = X.values.tolist()[0] |
|
|
|
yield int(i), { |
|
"label": label, |
|
"features": X, |
|
"columns":columns |
|
} |
|
|
|
def _generate_examples_text(self, filepath): |
|
self.load_vocab() |
|
|
|
with open(filepath, 'rb') as fp: |
|
dico = pickle.load(fp) |
|
|
|
for i, data in enumerate(dico): |
|
|
|
|
|
|
|
|
|
|
|
|
|
age = str(round(data['age'])) |
|
gender = str(data['gender']) |
|
if gender == "M": |
|
gender = "male" |
|
elif gender == "F": |
|
gender = "female" |
|
ethnicity = str(data['ethnicity']) |
|
insurance = str(data['insurance']) |
|
X = "" |
|
if self.mimic4_text_demos or self.mimic4_text_cond: |
|
X = "The patient " |
|
if self.mimic4_text_demos: |
|
if self.mimic4_text_cond: |
|
X += "("+ethnicity+" "+gender+", "+age+" years old, covered by "+insurance+") " |
|
else: |
|
X += "is "+ethnicity+" "+gender+", "+age+" years old, covered by "+insurance+". " |
|
|
|
|
|
|
|
if self.mimic4_text_cond: |
|
X += "was diagnosed with " |
|
cond = data['Cond']['fids'] |
|
for idx,c in enumerate(cond): |
|
X += self.full_cond.loc[self.full_cond["COND"] == str(c)]["LONG"].values[0]+("; " if idx+1 < len(cond) else ". ") |
|
|
|
|
|
|
|
if self.mimic4_text_charts: |
|
for x in data["Chart"]: |
|
data["Chart"][x] = [xi for xi in data["Chart"][x] if not (xi == "" or (isinstance(xi,float) and np.isnan(xi)))] |
|
data["Chart"] = codes_to_int(data["Chart"]) |
|
chart = {x:round(np.mean([it for it in data['Chart'][x]]),3) for x in data["Chart"] if len(data["Chart"][x]) > 0} |
|
|
|
|
|
for col in ["Glascow coma scale eye opening","Glascow coma scale motor response","Glascow coma scale verbal response"]: |
|
if not col in chart: |
|
continue |
|
chart[col] = int(round(chart[col])) |
|
for dtem in discretizer[col]: |
|
if dtem[1] == chart[col]: |
|
chart[col] = dtem[0][-1] |
|
for col in ["Glascow coma scale total"]: |
|
if not col in chart: |
|
continue |
|
chart[col] = int(round(chart[col])) |
|
|
|
X += "The chart events measured were : " |
|
for idx,c in enumerate(chart): |
|
X += str(chart[c]) + " for " + c + ("; " if (idx+1 < len(chart.keys())) else ". ") |
|
|
|
|
|
if self.mimic4_text_meds: |
|
meds = data['Med'] |
|
if len(meds.keys()) != 0: |
|
X += "The mean amounts of medications administered during the episode were : " |
|
meds = {x:round(np.mean([it for it in meds[x]]),3) for x in meds if len(meds[x]) > 0} |
|
for idx,c in enumerate(meds): |
|
if meds[c] != 0: |
|
short = self.full_meds.loc[self.full_meds["MEDS"] == int(c)]["SHORT"].values[0] |
|
long = self.full_meds.loc[self.full_meds["MEDS"] == int(c)]["LONG"].values[0] |
|
name = long if (long != "nan" and not (isinstance(long,float) and np.isnan(long))) else short |
|
if (name != "nan" and not (isinstance(name,float) and np.isnan(name))): |
|
X += str(meds[c]) + " of " + name + ("; " if (idx+1 < len(meds.keys())) else ". ") |
|
else: |
|
X += "No medication was administered." |
|
|
|
|
|
if self.mimic4_text_procs: |
|
proc = data['Proc'] |
|
if len(proc.keys()) != 0: |
|
X += "The procedures performed were: " |
|
for idx,c in enumerate(proc): |
|
short = self.full_proc.loc[self.full_proc["PROC"] == int(c)]["SHORT"].values[0] |
|
long = self.full_proc.loc[self.full_proc["PROC"] == int(c)]["LONG"].values[0] |
|
name = long if (long != "nan" and not (isinstance(long,float) and np.isnan(long))) else short |
|
if (name != "nan" and not (isinstance(name,float) and np.isnan(name))): |
|
X += str(name) + ("; " if (idx+1 < len(meds.keys())) else ". ") |
|
else: |
|
X += "No procedure was performed." |
|
yield int(i), { |
|
"label": data['label'], |
|
"features": X, |
|
} |
|
|
|
|
|
|
|
|
|
def _generate_examples(self, filepath, split): |
|
if "mimic4" in self.config.name: |
|
if self.mode == "mimic4-aggreg": |
|
yield from self._generate_examples_encoded(filepath,False) |
|
elif self.mode == "mimic4-tensor": |
|
yield from self._generate_examples_deep(filepath) |
|
elif self.mode == "mimic4-naive-prompt": |
|
yield from self._generate_examples_text(filepath) |
|
else: |
|
yield from self._generate_exemples_CHARTONLY(filepath) |