|
--- |
|
license: apache-2.0 |
|
task_categories: |
|
- feature-extraction |
|
- sentence-similarity |
|
language: |
|
- ar |
|
size_categories: |
|
- 10K<n<100K |
|
--- |
|
|
|
# Arabic Triplet with Multi Negatives |
|
|
|
## Dataset Summary |
|
|
|
This dataset is a modified version of the Arabic subset of the [Mr. TyDi dataset](https://huggingface.co/datasets/castorini/mr-tydi), tailored for retrieval and re-ranking tasks. The original dataset has been restructured by splitting the negative passages into separate fields (`negative1`, `negative2`, ..., `negativeN`) for each query. This modification allows more flexibility for training and evaluating retrieval and re-ranking models. |
|
|
|
The dataset retains the original intent of Mr. Tydi, focusing on monolingual retrieval for the Arabic language while offering a new structure for ease of use in ranking-based learning tasks. |
|
|
|
## Dataset Structure |
|
|
|
The dataset includes train split only where each query is paired with a set of positive passages and multiple individually enumerated negative passages (up to 30). |
|
|
|
### Example Data |
|
|
|
#### Train Set |
|
|
|
```json |
|
{ |
|
"query_id": "1", |
|
"query": "متى تم تطوير نظرية الحقل الكمي؟", |
|
"positive_passages": [ |
|
{ |
|
"text": "بدأت نظرية الحقل الكمي بشكل طبيعي بدراسة التفاعلات الكهرومغناطيسية ..." |
|
} |
|
], |
|
"negative1": { |
|
"text": "تم تنفيذ النهج مؤخرًا ليشمل نسخة جبرية من الحقل الكمي ..." |
|
}, |
|
"negative2": { |
|
"text": "تتناول هذه المقالة الخلفية التاريخية لتطوير نظرية الحقل ..." |
|
}, |
|
... |
|
} |
|
``` |
|
|
|
### Language Coverage |
|
The dataset focuses exclusively on the **Arabic** subset of Mr. TyDi. |
|
|
|
### Loading the Dataset |
|
|
|
You can load the dataset using the **datasets** library from Hugging Face: |
|
|
|
```python |
|
from datasets import load_dataset |
|
|
|
dataset = load_dataset('NAMAA-Space/Arabic-Triplet-With-Multi-Negatives') |
|
dataset |
|
``` |
|
|
|
### Dataset Usage |
|
|
|
The new format facilitates training retrieval and re-ranking models by providing explicit negative passage fields. This structure simplifies the handling of negative examples during model training and evaluation. |
|
|
|
### Citation Information |
|
|
|
If you use this dataset in your research, please cite the original Mr. TyDi paper and this dataset as follows: |
|
|
|
``` |
|
@article{mrtydi, |
|
title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, |
|
author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, |
|
year={2021}, |
|
journal={arXiv:2108.08787}, |
|
} |
|
|
|
@dataset{Namaa, |
|
title={Arabic Triplet With Multi Negatives}, |
|
author={Omer Nacar}, |
|
year={2024}, |
|
note={Hugging Face Dataset Repository} |
|
} |
|
``` |
|
|
|
|