Datasets:

Modalities:
Text
Formats:
csv
Libraries:
Datasets
pandas
License:
velmen's picture
updated Acknowledgement
bd7de3f verified
metadata
license: odc-by
task_categories:
  - translation
language:
  - en
  - ta
size_categories:
  - 10K<n<100K

Licensing Information

The dataset is released under the terms of ODC-BY. By using this, you are also bound to the respective Terms of Use and License of the original source.

Citation Information

@inproceedings{ranathunga-etal-2024-quality,
    title = "Quality Does Matter: A Detailed Look at the Quality and Utility of Web-Mined Parallel Corpora",
    author = "Ranathunga, Surangika  and
      De Silva, Nisansa  and
      Menan, Velayuthan  and
      Fernando, Aloka  and
      Rathnayake, Charitha",
    editor = "Graham, Yvette  and
      Purver, Matthew",
    booktitle = "Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)",
    month = mar,
    year = "2024",
    address = "St. Julian{'}s, Malta",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2024.eacl-long.52",
    pages = "860--880",
    abstract = "We conducted a detailed analysis on the quality of web-mined corpora for two low-resource languages (making three language pairs, English-Sinhala, English-Tamil and Sinhala-Tamil). We ranked each corpus according to a similarity measure and carried out an intrinsic and extrinsic evaluation on different portions of this ranked corpus. We show that there are significant quality differences between different portions of web-mined corpora and that the quality varies across languages and datasets. We also show that, for some web-mined datasets, Neural Machine Translation (NMT) models trained with their highest-ranked 25k portion can be on par with human-curated datasets.",
}

Acknowledgement

This work was funded by the Google Award for Inclusion Research (AIR) 2022 received by Surangika Ranathunga and Nisansa de Silva.

We thank the NLLB Meta AI team for open sourcing the dataset. We also thank the AllenNLP team at AI2 for hosting and releasing the original NLLB dataset.