The dataset viewer is not available for this dataset.
Cannot get the config names for the dataset.
Error code:   ConfigNamesError
Exception:    ValueError
Message:      Feature type 'Pil.image.image' not found. Available feature types: ['Value', 'ClassLabel', 'Translation', 'TranslationVariableLanguages', 'Sequence', 'Array2D', 'Array3D', 'Array4D', 'Array5D', 'Audio', 'Image']
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/dataset/config_names.py", line 79, in compute_config_names_response
                  config_names = get_dataset_config_names(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 347, in get_dataset_config_names
                  dataset_module = dataset_module_factory(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1910, in dataset_module_factory
                  raise e1 from None
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1885, in dataset_module_factory
                  return HubDatasetModuleFactoryWithoutScript(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1237, in get_module
                  dataset_infos = DatasetInfosDict.from_dataset_card_data(dataset_card_data)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/info.py", line 464, in from_dataset_card_data
                  dataset_info = DatasetInfo._from_yaml_dict(dataset_card_data["dataset_info"])
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/info.py", line 395, in _from_yaml_dict
                  yaml_data["features"] = Features._from_yaml_list(yaml_data["features"])
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/features/features.py", line 1918, in _from_yaml_list
                  return cls.from_dict(from_yaml_inner(yaml_data))
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/features/features.py", line 1758, in from_dict
                  obj = generate_from_dict(dic)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/features/features.py", line 1400, in generate_from_dict
                  return {key: generate_from_dict(value) for key, value in obj.items()}
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/features/features.py", line 1400, in <dictcomp>
                  return {key: generate_from_dict(value) for key, value in obj.items()}
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/features/features.py", line 1406, in generate_from_dict
                  raise ValueError(f"Feature type '{_type}' not found. Available feature types: {list(_FEATURE_TYPES.keys())}")
              ValueError: Feature type 'Pil.image.image' not found. Available feature types: ['Value', 'ClassLabel', 'Translation', 'TranslationVariableLanguages', 'Sequence', 'Array2D', 'Array3D', 'Array4D', 'Array5D', 'Audio', 'Image']

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

Quick! Draw 26 Class Dataset

This dataset is derived from the Google Quick! Draw dataset and contains 26 classes of doodle images drawn by users. The classes include common objects and entities like animals, vehicles, food items, and everyday objects.

Dataset Details

  • Number of Classes: 26
  • Total Images: 520,000 (416,000 train, 52,000 val, 52,000 test)
  • Image Format: PNG images of size 28x28 pixels (grayscale)
  • Data Fields:
    • image: PIL Image object
    • label: Integer label corresponding to class

Class Labels

0: bowtie, 1: windmill, 2: tree, 3: river, 4: ice cream, 5: eye, 6: book, 7: sun, 8: star, 9: airplane, 10: butterfly, 11: clock, 12: car, 13: fish, 14: face, 15: umbrella, 16: cat, 17: bicycle, 18: pizza, 19: house, 20: cake, 21: bucket, 22: crown, 23: light bulb, 24: cell phone, 25: t-shirt

Download and Loading

You can load this dataset using the load_dataset function from the datasets library:

from datasets import load_dataset

dataset = load_dataset("OmAlve/quickdraw_26_classes")

This will download and cache the dataset locally.

Maintainers

Downloads last month
33