miam / README.md
system's picture
system HF staff
Update files from the datasets library (from 1.6.0)
bd1467e
|
raw
history blame
9.77 kB
---
annotations_creators:
- expert-generated
language_creators:
- expert-generated
languages:
dihana:
- es
ilisten:
- it
loria:
- fr
maptask:
- en
vm2:
- de
licenses:
- cc-by-sa-4-0
multilinguality:
- multilingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- sequence-modeling
- text-classification
task_ids:
dihana:
- dialogue-modeling
- language-modeling
- text-classification-other-dialogue-act-classification
ilisten:
- dialogue-modeling
- language-modeling
- text-classification-other-dialogue-act-classification
loria:
- dialogue-modeling
- language-modeling
- text-classification-other-dialogue-act-classification
maptask:
- dialogue-modeling
- language-modeling
- text-classification-other-dialogue-act-classification
vm2:
- dialogue-modeling
- language-modeling
- text-classification-other-dialogue-act-classification
---
# Dataset Card for MIAM
## Table of Contents
- [Dataset Card for MIAM](#dataset-card-for-miam)
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Dihana Corpus](#dihana-corpus)
- [iLISTEN Corpus](#ilisten-corpus)
- [LORIA Corpus](#loria-corpus)
- [HCRC MapTask Corpus](#hcrc-maptask-corpus)
- [VERBMOBIL](#verbmobil)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
- [Who are the source language producers?](#who-are-the-source-language-producers)
- [Annotations](#annotations)
- [Annotation process](#annotation-process)
- [Who are the annotators?](#who-are-the-annotators)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Benchmark Curators](#benchmark-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** [N/A]
- **Repository:** [N/A]
- **Paper:** [N/A]
- **Leaderboard:** [N/A]
- **Point of Contact:** [N/A]
### Dataset Summary
Multilingual dIalogAct benchMark is a collection of resources for training, evaluating, and
analyzing natural language understanding systems specifically designed for spoken language. Datasets
are in English, French, German, Italian and Spanish. They cover a variety of domains including
spontaneous speech, scripted scenarios, and joint task completion. All datasets contain dialogue act
labels.
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
English, French, German, Italian, Spanish.
## Dataset Structure
### Data Instances
#### Dihana Corpus
For the `dihana` configuration one example from the dataset is:
```
{
'Speaker': 'U',
'Utterance': 'Hola , quería obtener el horario para ir a Valencia',
'Dialogue_Act': 9, # 'Pregunta' ('Request')
'Dialogue_ID': '0',
'File_ID': 'B209_BA5c3',
}
```
#### iLISTEN Corpus
For the `ilisten` configuration one example from the dataset is:
```
{
'Speaker': 'T_11_U11',
'Utterance': 'ok, grazie per le informazioni',
'Dialogue_Act': 6, # 'KIND-ATTITUDE_SMALL-TALK'
'Dialogue_ID': '0',
}
```
#### LORIA Corpus
For the `loria` configuration one example from the dataset is:
```
{
'Speaker': 'Samir',
'Utterance': 'Merci de votre visite, bonne chance, et à la prochaine !',
'Dialogue_Act': 21, # 'quit'
'Dialogue_ID': '5',
'File_ID': 'Dial_20111128_113927',
}
```
#### HCRC MapTask Corpus
For the `maptask` configuration one example from the dataset is:
```
{
'Speaker': 'f',
'Utterance': 'is it underneath the rope bridge or to the left',
'Dialogue_Act': 6, # 'query_w'
'Dialogue_ID': '0',
'File_ID': 'q4ec1',
}
```
#### VERBMOBIL
For the `vm2` configuration one example from the dataset is:
```
{
'Utterance': 'ja was sind viereinhalb Stunden Bahngerüttel gegen siebzig Minuten Turbulenzen im Flugzeug',
'Utterance': 'Utterance',
'Dialogue_Act': 'Dialogue_Act', # 'INFORM'
'Speaker': 'A',
'Dialogue_ID': '66',
}
```
### Data Fields
For the `dihana` configuration, the different fields are:
- `Speaker`: identifier of the speaker as a string.
- `Utterance`: Utterance as a string.
- `Dialogue_Act`: Dialog act label of the utterance. It can be one of 'Afirmacion' (0) [Feedback_positive], 'Apertura' (1) [Opening], 'Cierre' (2) [Closing], 'Confirmacion' (3) [Acknowledge], 'Espera' (4) [Hold], 'Indefinida' (5) [Undefined], 'Negacion' (6) [Feedback_negative], 'No_entendido' (7) [Request_clarify], 'Nueva_consulta' (8) [New_request], 'Pregunta' (9) [Request] or 'Respuesta' (10) [Reply].
- `Dialogue_ID`: identifier of the dialogue as a string.
- `File_ID`: identifier of the source file as a string.
For the `ilisten` configuration, the different fields are:
- `Speaker`: identifier of the speaker as a string.
- `Utterance`: Utterance as a string.
- `Dialogue_Act`: Dialog act label of the utterance. It can be one of 'AGREE' (0), 'ANSWER' (1), 'CLOSING' (2), 'ENCOURAGE-SORRY' (3), 'GENERIC-ANSWER' (4), 'INFO-REQUEST' (5), 'KIND-ATTITUDE_SMALL-TALK' (6), 'OFFER-GIVE-INFO' (7), 'OPENING' (8), 'PERSUASION-SUGGEST' (9), 'QUESTION' (10), 'REJECT' (11), 'SOLICITATION-REQ_CLARIFICATION' (12), 'STATEMENT' (13) or 'TALK-ABOUT-SELF' (14).
- `Dialogue_ID`: identifier of the dialogue as a string.
For the `loria` configuration, the different fields are:
- `Speaker`: identifier of the speaker as a string.
- `Utterance`: Utterance as a string.
- `Dialogue_Act`: Dialog act label of the utterance. It can be one of 'ack' (0), 'ask' (1), 'find_mold' (2), 'find_plans' (3), 'first_step' (4), 'greet' (5), 'help' (6), 'inform' (7), 'inform_engine' (8), 'inform_job' (9), 'inform_material_space' (10), 'informer_conditioner' (11), 'informer_decoration' (12), 'informer_elcomps' (13), 'informer_end_manufacturing' (14), 'kindAtt' (15), 'manufacturing_reqs' (16), 'next_step' (17), 'no' (18), 'other' (19), 'quality_control' (20), 'quit' (21), 'reqRep' (22), 'security_policies' (23), 'staff_enterprise' (24), 'staff_job' (25), 'studies_enterprise' (26), 'studies_job' (27), 'todo_failure' (28), 'todo_irreparable' (29), 'yes' (30)
- `Dialogue_ID`: identifier of the dialogue as a string.
- `File_ID`: identifier of the source file as a string.
For the `maptask` configuration, the different fields are:
- `Speaker`: identifier of the speaker as a string.
- `Utterance`: Utterance as a string.
- `Dialogue_Act`: Dialog act label of the utterance. It can be one of 'acknowledge' (0), 'align' (1), 'check' (2), 'clarify' (3), 'explain' (4), 'instruct' (5), 'query_w' (6), 'query_yn' (7), 'ready' (8), 'reply_n' (9), 'reply_w' (10) or 'reply_y' (11).
- `Dialogue_ID`: identifier of the dialogue as a string.
- `File_ID`: identifier of the source file as a string.
For the `vm2` configuration, the different fields are:
- `Utterance`: Utterance as a string.
- `Dialogue_Act`: Dialogue act label of the utterance. It can be one of 'ACCEPT' (0), 'BACKCHANNEL' (1), 'BYE' (2), 'CLARIFY' (3), 'CLOSE' (4), 'COMMIT' (5), 'CONFIRM' (6), 'DEFER' (7), 'DELIBERATE' (8), 'DEVIATE_SCENARIO' (9), 'EXCLUDE' (10), 'EXPLAINED_REJECT' (11), 'FEEDBACK' (12), 'FEEDBACK_NEGATIVE' (13), 'FEEDBACK_POSITIVE' (14), 'GIVE_REASON' (15), 'GREET' (16), 'INFORM' (17), 'INIT' (18), 'INTRODUCE' (19), 'NOT_CLASSIFIABLE' (20), 'OFFER' (21), 'POLITENESS_FORMULA' (22), 'REJECT' (23), 'REQUEST' (24), 'REQUEST_CLARIFY' (25), 'REQUEST_COMMENT' (26), 'REQUEST_COMMIT' (27), 'REQUEST_SUGGEST' (28), 'SUGGEST' (29), 'THANK' (30).
- `Speaker`: Speaker as a string.
- `Dialogue_ID`: identifier of the dialogue as a string.
### Data Splits
| Dataset name | Train | Valid | Test |
| ------------ | ----- | ----- | ---- |
| dihana | 19063 | 2123 | 2361 |
| ilisten | 1986 | 230 | 971 |
| loria | 8465 | 942 | 1047 |
| maptask | 25382 | 5221 | 5335 |
| vm2 | 25060 | 2860 | 2855 |
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Benchmark Curators
Anonymous
### Licensing Information
This work is licensed under a [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Unported License](https://creativecommons.org/licenses/by-sa/4.0/).
### Citation Information
```
@unpublished{
anonymous2021cross-lingual,
title={Cross-Lingual Pretraining Methods for Spoken Dialog},
author={Anonymous},
journal={OpenReview Preprint},
year={2021},
url{https://openreview.net/forum?id=c1oDhu_hagR},
note={anonymous preprint under review}
}
```