Dataset Preview
Full Screen
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 10 new columns ({'0.5', '0.3', '0.2', '0', '0.6', '0.9', '0.7', '0.1', '0.8', '0.4'}) and 10 missing columns ({'__index_level_9__', '__index_level_5__', '__index_level_1__', '__index_level_2__', '__index_level_8__', '__index_level_7__', '__index_level_0__', '__index_level_4__', '__index_level_3__', '__index_level_6__'}).

This happened while the csv dataset builder was generating data using

zip://1_Indoor/2018-05-30-11-15-17_exp1_groundtruth_addedtest.csv::/tmp/hf-datasets-cache/medium/datasets/86430680366800-config-parquet-and-info-QDrone-UWB_IMU_GT_QDrone_-326a9221/hub/datasets--QDrone--UWB_IMU_GT_QDrone_Benchmark_Dataset/snapshots/cd3774c9db03899afde886a52f06687bbe4a1ed1/All Datasets/indoor.zip

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1870, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 622, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2292, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2240, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              2: double
              0: double
              0.1: double
              0.2: double
              0.3: double
              0.4: double
              0.5: double
              0.6: double
              0.7: double
              0.8: double
              0.9: double
              -- schema metadata --
              pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 1432
              to
              {'2': Value(dtype='float64', id=None), '__index_level_0__': Value(dtype='float64', id=None), '__index_level_1__': Value(dtype='float64', id=None), '__index_level_2__': Value(dtype='float64', id=None), '__index_level_3__': Value(dtype='float64', id=None), '__index_level_4__': Value(dtype='float64', id=None), '__index_level_5__': Value(dtype='float64', id=None), '__index_level_6__': Value(dtype='float64', id=None), '__index_level_7__': Value(dtype='float64', id=None), '__index_level_8__': Value(dtype='float64', id=None), '__index_level_9__': Value(dtype='float64', id=None)}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1417, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1049, in convert_to_parquet
                  builder.download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 924, in download_and_prepare
                  self._download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1000, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1741, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1872, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 10 new columns ({'0.5', '0.3', '0.2', '0', '0.6', '0.9', '0.7', '0.1', '0.8', '0.4'}) and 10 missing columns ({'__index_level_9__', '__index_level_5__', '__index_level_1__', '__index_level_2__', '__index_level_8__', '__index_level_7__', '__index_level_0__', '__index_level_4__', '__index_level_3__', '__index_level_6__'}).
              
              This happened while the csv dataset builder was generating data using
              
              zip://1_Indoor/2018-05-30-11-15-17_exp1_groundtruth_addedtest.csv::/tmp/hf-datasets-cache/medium/datasets/86430680366800-config-parquet-and-info-QDrone-UWB_IMU_GT_QDrone_-326a9221/hub/datasets--QDrone--UWB_IMU_GT_QDrone_Benchmark_Dataset/snapshots/cd3774c9db03899afde886a52f06687bbe4a1ed1/All Datasets/indoor.zip
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

2
float64
__index_level_0__
float64
__index_level_1__
float64
__index_level_2__
float64
__index_level_3__
float64
__index_level_4__
float64
__index_level_5__
float64
__index_level_6__
float64
__index_level_7__
float64
__index_level_8__
float64
__index_level_9__
float64
0.235189
0
0.000852
-0.003245
-0.000796
-0.03244
0.09847
9.760156
-0.001091
0.004993
0.971936
null
2
null
null
null
null
null
null
null
null
null
0.235172
0.012915
0.001058
-0.002524
0.000681
-0.040358
0.086003
9.755304
-0.001086
0.004998
0.97194
null
2
null
null
null
null
null
null
null
null
null
0.235156
0.019967
0.002387
-0.002337
0.000063
-0.04277
0.081353
9.749039
-0.001083
0.005006
0.971944
null
2
null
null
null
null
null
null
null
null
null
0.235136
0.032896
0.001896
-0.001761
-0.002713
-0.05141
0.078849
9.743692
-0.001081
0.00502
0.971949
null
3
null
null
null
null
null
null
null
null
null
null
0
null
null
null
null
null
null
null
null
null
null
2
null
null
null
null
null
null
null
null
null
0.235128
0.040001
0.000479
-0.001731
-0.005361
-0.055495
0.081809
9.738906
-0.001081
0.005032
0.971951
null
0
null
null
null
null
null
null
null
null
null
null
0.048069
100
11.949
0.056
null
null
null
null
null
null
null
2
null
null
null
null
null
null
null
null
null
0.235134
0.052979
0.000584
-0.001989
-0.007528
-0.056606
0.087282
9.733091
-0.001083
0.005038
0.971949
null
3
null
null
null
null
null
null
null
null
null
null
0
null
null
null
null
null
null
null
null
null
null
2
null
null
null
null
null
null
null
null
null
0.235156
0.059966
0.000432
-0.001635
-0.00984
-0.051793
0.091874
9.734534
-0.001085
0.005044
0.971944
null
2
null
null
null
null
null
null
null
null
null
0.235182
0.073236
-0.00018
-0.001805
-0.009464
-0.045423
0.098676
9.729981
-0.001088
0.005049
0.971938
null
3
null
null
null
null
null
null
null
null
null
null
0
null
null
null
null
null
null
null
null
null
null
2
null
null
null
null
null
null
null
null
null
0.235207
0.080001
-0.000018
-0.002715
-0.008083
-0.042714
0.098013
9.718899
-0.001091
0.005052
0.971932
null
2
null
null
null
null
null
null
null
null
null
0.235233
0.092905
0.000103
-0.002444
-0.004483
-0.040242
0.099118
9.722691
-0.00109
0.005054
0.971925
null
3
null
null
null
null
null
null
null
null
null
null
0
null
null
null
null
null
null
null
null
null
null
0
null
null
null
null
null
null
null
null
null
null
0.093554
103
13.7
0.056
null
null
null
null
null
null
null
2
null
null
null
null
null
null
null
null
null
0.235235
0.099978
-0.000027
-0.001808
-0.002204
-0.04612
0.089273
9.732219
-0.00109
0.005057
0.971925
null
2
null
null
null
null
null
null
null
null
null
0.235224
0.112984
0.000768
-0.002479
-0.000103
-0.060389
0.075753
9.733202
-0.001091
0.00506
0.971927
null
3
null
null
null
null
null
null
null
null
null
null
0
null
null
null
null
null
null
null
null
null
null
0
null
null
null
null
null
null
null
null
null
null
0.116259
100
11.948
0.055
null
null
null
null
null
null
null
2
null
null
null
null
null
null
null
null
null
0.235205
0.120055
0.000787
-0.002633
-0.000177
-0.07906
0.072251
9.720451
-0.00109
0.005066
0.971932
null
2
null
null
null
null
null
null
null
null
null
0.235191
0.132887
0.00105
-0.002765
-0.001514
-0.093533
0.076658
9.71211
-0.001087
0.005072
0.971935
null
3
null
null
null
null
null
null
null
null
null
null
0
null
null
null
null
null
null
null
null
null
null
2
null
null
null
null
null
null
null
null
null
0.235178
0.139966
0.00149
-0.002583
-0.004829
-0.098235
0.08166
9.703397
-0.001084
0.00508
0.971938
null
2
null
null
null
null
null
null
null
null
null
0.235181
0.152979
0.000903
-0.001944
-0.007762
-0.096985
0.084674
9.702172
-0.001081
0.005089
0.971938
null
3
null
null
null
null
null
null
null
null
null
null
0
null
null
null
null
null
null
null
null
null
null
2
null
null
null
null
null
null
null
null
null
0.235202
0.160007
0.001026
-0.002482
-0.009528
-0.090181
0.088332
9.698644
-0.001082
0.005095
0.971933
null
0
null
null
null
null
null
null
null
null
null
null
0.161553
103
13.7
0.055
null
null
null
null
null
null
null
2
null
null
null
null
null
null
null
null
null
0.235226
0.173163
0.002661
-0.001829
-0.007518
-0.077858
0.091804
9.697092
-0.001081
0.005103
0.971927
null
3
null
null
null
null
null
null
null
null
null
null
0
null
null
null
null
null
null
null
null
null
null
0
null
null
null
null
null
null
null
null
null
null
0.182564
100
11.949
0.055
null
null
null
null
null
null
null
2
null
null
null
null
null
null
null
null
null
0.235243
0.180002
0.002156
-0.001512
-0.005334
-0.068825
0.097817
9.709622
-0.001081
0.005117
0.971923
null
2
null
null
null
null
null
null
null
null
null
0.235254
0.192902
0.000579
-0.002088
-0.002879
-0.062407
0.105207
9.717457
-0.001083
0.00513
0.97192
null
3
null
null
null
null
null
null
null
null
null
null
0
null
null
null
null
null
null
null
null
null
null
2
null
null
null
null
null
null
null
null
null
0.235247
0.199988
-0.000325
-0.002613
-0.000148
-0.057883
0.105315
9.721257
-0.001083
0.005135
0.971921
null
2
null
null
null
null
null
null
null
null
null
0.235227
0.213005
-0.000705
-0.002983
0.001762
-0.046281
0.101191
9.720468
-0.001083
0.005135
0.971926
null
3
null
null
null
null
null
null
null
null
null
null
0
null
null
null
null
null
null
null
null
null
null
2
null
null
null
null
null
null
null
null
null
0.235198
0.22001
-0.000722
-0.002992
0.001304
-0.039781
0.100155
9.721073
-0.001081
0.005133
0.971933
null
0
null
null
null
null
null
null
null
null
null
null
0.22794
103
13.699
0.056
null
null
null
null
null
null
null
2
null
null
null
null
null
null
null
null
null
0.235175
0.23293
-0.000279
-0.002514
-0.001158
-0.041525
0.090326
9.72714
-0.001079
0.00513
0.971939
null
3
null
null
null
null
null
null
null
null
null
null
0
null
null
null
null
null
null
null
null
null
null
2
null
null
null
null
null
null
null
null
null
0.23516
0.239977
0.000309
-0.001967
-0.00482
-0.046247
0.084694
9.741055
-0.001079
0.005131
0.971942
null
2
null
null
null
null
null
null
null
null
null
0.235163
0.252929
0.001138
-0.00185
-0.008619
-0.058117
0.078544
9.757121
-0.001081
0.005135
0.971942
null
3
null
null
null
null
null
null
null
null
null
null
0
null
null
null
null
null
null
null
null
null
null
2
null
null
null
null
null
null
null
null
null
0.235188
0.259967
0.000643
-0.002642
-0.008976
-0.062829
0.072426
9.756265
-0.001082
0.005142
0.971936
null
2
null
null
null
null
null
null
null
null
null
0.235209
0.274436
0.000559
-0.002536
-0.006528
-0.079333
0.072171
9.748212
-0.001081
0.005146
0.971931
null
3
null
null
null
null
null
null
null
null
null
null
0
null
null
null
null
null
null
null
null
null
null
2
null
null
null
null
null
null
null
null
null
0.235221
0.280573
0.000221
-0.00213
-0.004804
-0.093238
0.071739
9.748838
-0.00108
0.005151
0.971928
null
2
null
null
null
null
null
null
null
null
null
0.235232
0.292902
-0.00006
-0.002489
-0.002318
-0.093098
0.068555
9.761446
-0.00108
0.005154
0.971925
null
3
null
null
null
null
null
null
null
null
null
null
0
null
null
null
null
null
null
null
null
null
null
2
null
null
null
null
null
null
null
null
null
End of preview.

For additional details, please visit our website: https://benchmark.qdrone.ausmlab.com.

Q-Drone UWB Benchmark Dataset

Overview

We present the Q-Drone UWB Benchmark, a unique dataset derived from experiments conducted using the Q-Drone system—a UAV equipped with a UWB network at York University. This dataset encompasses data from five different sites, including an indoor environment, an open sports field, an area near a glass building, a semi-open tunnel, and beneath a bridge. The benchmark data were collected over a total of 1 hour 50 minutes and 28 seconds of flight time, covering approximately 4.3 km with varying UAV maneuvers and spatial configurations between the UAV and UWB anchors.

Environments and Locations

The data were collected from the following sites:

  • Indoor: 26m(w) x 33m(l), Oshawa, Ontario, Canada
  • Field: Outdoor open sports field, 12m(w) x 13m(l), Uxbridge, Ontario, Canada
  • Building: Near a glass building, 7m(w) x 7m(l), Newmarket, Ontario, Canada
  • Bridge: Underneath a concrete-metal bridge, 10m(w) x 23m(l), Niagara, Ontario, Canada
  • Tunnel: Under a metal bridge, 8m(w) x 30m(l), Oshawa, Ontario, Canada

Data Acquisition and Statistics

Overall Dataset Characteristics

Site Number of Datasets Avg Data per Dataset Flight Time (sec) Travelled Distance (m) Deployed UWB Anchors Area (m²) UWB Range MAE (m)
Indoor 5 62194 1687 1260.88 91.96 0.37
Field 5 92108 2313 1780.52 158.74 0.17
Building 3 34007 823 388.92 50.10 2.02
Bridge 4 26359 726 330.02 246.80 0.34
Tunnel 6 39164 1079 504.47 241.80 1.61
Total 23 253832 6628 4264.81 789.4 0.902

Detailed Individual Dataset Information

This section details the data acquired per dataset, including IMU measurements and precise coordinates of the UWB anchors for accurate localization.

UAV Platform

The UAV used is the DJI Matrice 100, a professional UAV capable of mounting up to 2.4 kg of payload. The payload consists of:

  • UWB TIME DOMAIN™ P440 UWB tag
  • Intel NUC computer
  • Prism GRZ101, 360° mini prism
  • External battery

UWB Anchor System

Developed by TIME DOMAIN, the P400 is an Ultra-Wideband (UWB) radio transceiver. For this experiment, we utilized five PulsON 440 (P440) modules from the P400 family. The UWB anchor setup includes four UWB tags mounted on tripods at varying heights, arranged in a square. Using the Time-of-Flight (TOF) method, it provides 2 cm accuracy distance measurements at up to 125 Hz rate, operable from above 40°C to below -85°C, suitable for high shock and high vibration environments.

Total Station

A robotic total station was used to ensure reliable data for validating positioning methods. The following instruments were used:

  • Indoor, bridge, and tunnel datasets: Leica Nova MS60 MultiStation, measuring up to 1000m with 1” (0.00027°) angle accuracy.
  • Outdoor datasets: Trimble VX Spatial Station, measuring up to 5,500 m with 4 mm accuracy and 0.4 sec measurement time.

Communication System

The flight platform of the DJI Matrice 100 can be customized via an onboard SDK. Connected devices include:

  • Intel NUC computer: Connected via Micro-USB, managing communications with the flight controller and onboard sensors.
  • UWB tag and prism: Provide real-time data including IMU feeds and spatial measurements.

Data Format

Data are available in csv format, and include the following types of data:

  • IMU: Time(sec), angular velocity (x, y, z), linear acceleration (x, y, z), orientation quaternion (x, y, z, w), height value
  • UWB: Time(sec), Module ID, Range

The data is provided raw, without calibration, within the UWB anchors' coordination system.

Structure of Dataset

UWB Data

  • [row 1] 0
  • [row 2] Time(sec), Module ID, Range, Self-range error

IMU Data

  • [row 1] 2
  • [row 2] Time(sec), angular velocity-x, angular velocity-y, angular velocity-z, linear acc-x, linear acc-y, linear acc-z, orientation quaternion-x, orientation quaternion-y, orientation quaternion-z, orientation quaternion-w

Height

  • [row 1] 3
  • [row 2] Height value

Citation

If you use this dataset in your research, please cite our paper:

@inproceedings{arjmandi2020uwb, title={Benchmark Dataset of Ultra-Wideband Radio Based UAV Positioning}, author={Arjmandi, Zahra and Kang, Jungwon and Park, Sohn Kunwoo and Gunho}, booktitle={IEEE International Conference on Intelligent Transportation Systems}, year={2020} }

Downloads last month
5