File size: 8,455 Bytes
b3b3061
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
# Copyright 2024 The YourMT3 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Please see the details in the LICENSE file.
import math
from typing import Optional, Union

from torch import nn
from transformers.configuration_utils import PretrainedConfig
from transformers.modeling_utils import PreTrainedModel


class ConformerYMT3Config(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`ConformerYMT3Encoder`]. It is used to
    instantiate an ConformerYMT3Encoder according to the specified arguments, defining the model architecture.
    Instantiating a configuration with the defaults will yield a similar configuration to that of the Wav2Vec2Conformer
    [facebook/wav2vec2-conformer-rel-pos-large](https://huggingface.co/facebook/wav2vec2-conformer-rel-pos-large)
    architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        d_model (`int`, *optional*, defaults to 512):
            Dimensionality of the encoder layers and the pooler layer.
        num_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 2048):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` are supported.
        dropout_rate (`float`, *optional*, defaults to 0.05):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        layerdrop (`float`, *optional*, defaults to 0.1):
            The LayerDrop probability. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more
            details.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        conv_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 512, 512, 512)`):
            A tuple of integers defining the number of input and output channels of each 1D convolutional layer in the
            feature encoder. The length of *conv_dim* defines the number of 1D convolutional layers.
        conv_stride (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 2, 2, 2, 2, 2, 2)`):
            A tuple of integers defining the stride of each 1D convolutional layer in the feature encoder. The length
            of *conv_stride* defines the number of convolutional layers and has to match the length of *conv_dim*.
        conv_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(10, 3, 3, 3, 3, 3, 3)`):
            A tuple of integers defining the kernel size of each 1D convolutional layer in the feature encoder. The
            length of *conv_kernel* defines the number of convolutional layers and has to match the length of
            *conv_dim*.
        conv_bias (`bool`, *optional*, defaults to `False`):
            Whether the 1D convolutional layers have a bias.
        output_hidden_size (`int`, *optional*):
            Dimensionality of the encoder output layer. If not defined, this defaults to *hidden-size*. Only relevant
            if `add_adapter is True`.
        position_encoding_type (`str`, *optional*, defaults to `"relative"`):
            Can be specified to `relative` or `rotary` for relative or rotary position embeddings respectively. If left
            `None` no relative position embedding is applied.
        rotary_embedding_base (`int`, *optional*, defaults to 10000):
            If `"rotary"` position embeddings are used, defines the size of the embedding base.
        num_max_positions (`int`, *optional*, defaults to 5000):
            if `"relative"` position embeddings are used, defines the maximum source input positions.
        conv_depthwise_kernel_size (`int`, defaults to 31):
            Kernel size of convolutional depthwise 1D layer in Conformer blocks.

    Example:

    ```python
    >>> from transformers import ConformerYMT3Config, ConformerYMT3Encoder

    >>> # Initializing a ConformerYMT3Encoder configuration
    >>> configuration = ConformerYMT3Config()

    >>> # Initializing a model (with random weights) from the facebook/wav2vec2-conformer-rel-pos-large style configuration
    >>> model = ConformerYMT3Encoder(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""
    model_type = "conformer-ymt3"

    def __init__(
        self,
        d_model=512,  # 768
        num_layers=8,  # ConformerYMT3Encoder
        num_heads=8,  # ConformerYMT3SelfAttention
        intermediate_size=2048,  # 3072,# used in intermediate_dense of ConformerYMT3FeedForward
        hidden_act="gelu",  # used in intermediate_act_fn of ConformerYMT3FeedForward
        dropout_rate=0.1,
        layerdrop=0.1,
        initializer_range=0.02,
        layer_norm_eps=1e-5,
        conv_dim=(512, 512, 512, 512, 512, 512, 512),
        conv_stride=(5, 2, 2, 2, 2, 2, 2),
        conv_kernel=(10, 3, 3, 3, 3, 3, 3),
        conv_bias=False,
        position_encoding_type="rotary",
        rotary_embedding_base=10000,
        num_max_positions=1024,
        conv_depthwise_kernel_size=31,
        **kwargs,
    ):
        super().__init__(**kwargs)
        self.d_model = d_model
        self.conv_dim = list(conv_dim)
        self.conv_stride = list(conv_stride)
        self.conv_kernel = list(conv_kernel)
        self.conv_bias = conv_bias
        self.num_layers = num_layers
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.num_heads = num_heads
        self.dropout_rate = dropout_rate

        self.layerdrop = layerdrop
        self.layer_norm_eps = layer_norm_eps
        self.initializer_range = initializer_range
        self.num_max_positions = num_max_positions
        self.position_encoding_type = position_encoding_type
        self.rotary_embedding_base = rotary_embedding_base

        # Conformer-block related
        self.conv_depthwise_kernel_size = conv_depthwise_kernel_size


class ConformerYMT3PreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = ConformerYMT3Config
    base_model_prefix = "wav2vec2_conformer"
    main_input_name = "input_values"
    supports_gradient_checkpointing = True

    def _init_weights(self, module):
        """Initialize the weights"""
        if module.__class__.__name__ == "ConformerYMT3SelfAttention":
            if hasattr(module, "pos_bias_u"):
                nn.init.xavier_uniform_(module.pos_bias_u)
            if hasattr(module, "pos_bias_v"):
                nn.init.xavier_uniform_(module.pos_bias_v)
        elif isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        elif isinstance(module, nn.Conv1d):
            nn.init.kaiming_normal_(module.weight)
            if module.bias is not None:
                k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0]))
                nn.init.uniform_(module.bias, a=-k, b=k)

    def _set_gradient_checkpointing(self, module, value=False):
        if module.__class__.__name__ == "ConformerYMT3Encoder":
            module.gradient_checkpointing = value