File size: 16,384 Bytes
b3b3061
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
# Copyright 2024 The YourMT3 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Please see the details in the LICENSE file.
from dataclasses import dataclass
from typing import Optional, Tuple
import torch
from torch import nn
from transformers.utils import ModelOutput
from transformers.configuration_utils import PretrainedConfig
from transformers.modeling_utils import PreTrainedModel
# from transformers.models.perceiver.modeling_perceiver import (PerceiverAbstractPositionEncoding,
#                                                               PerceiverTrainablePositionEncoding,
#                                                               PerceiverFourierPositionEncoding)


class PerceiverTFConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`PerceiverTF`]. It is used to instantiate an
    Perceiver model according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the Perceiver
    [deepmind/language-perceiver](https://huggingface.co/deepmind/language-perceiver) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        num_latents (`int`, *optional*, defaults to 256):
            The number of latents.
        d_latents (`int`, *optional*, defaults to 1280):
            Dimension of the latent embeddings.
        d_model (`int`, *optional*, defaults to 768):
            Dimension of the inputs. Should only be provided in case [*PerceiverTextPreprocessor*] is used or no
            preprocessor is provided.
        kv_dim (`int`, *optional*, defaults to 128):
        num_blocks (`int`, *optional*, defaults to 1):
            Number of blocks in the Transformer encoder.
        num_self_attention_heads (`int`, *optional*, defaults to 8):
            Number of attention heads for each self-attention layer in the Transformer encoder.
        num_cross_attention_heads (`int`, *optional*, defaults to 8):
            Number of attention heads for each cross-attention layer in the Transformer encoder.
        num_local_transformers_per_block (`int`, *optional*, defaults to 2):
            Number of local Transformer layers per Transformer block in the Transformer encoder.
        num_temporal_transformers_per_block (`int`, *optional*, defaults to 2):
            Number of temporal Transformer layers per Transformer block in the Transformer encoder.
        shared_parallel_temporal_transformers (`bool`, *optional*, defaults to `False`):
            Whether to share the parameters across the K parallel temporal Transformers in each block.
        qk_channels (`int`, *optional*):
            Dimension to project the queries + keys before applying attention in the cross-attention and self-attention
            layers of the encoder. Will default to preserving the dimension of the queries if not specified.
        v_channels (`int`, *optional*):
            Dimension to project the values before applying attention in the cross-attention and self-attention layers
            of the encoder. Will default to preserving the dimension of the queries if not specified.
        ** DEPRECATED ** cross_attention_shape_for_attention (`str`, *optional*, defaults to `'kv'`):
            Dimension to use when downsampling the queries and keys in the cross-attention layer of the encoder.
        ** DEPRECATED ** self_attention_widening_factor (`int`, *optional*, defaults to 1):
            Dimension of the feed-forward layer in the cross-attention layer of the Transformer encoder.
        cross_attention_widening_factor (`int`, *optional*, defaults to 1):
            Dimension of the feed-forward layer in the self-attention layers of the Transformer encoder.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` are supported.
        dropout_rate (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_type (`str`, *optional*, defaults to `'layer_norm'`):
            The type of layer normalization to use. Can be one of {'layer_norm', 'rms_norm'}.
        layer_norm_eps (`float`, *optional*, defaults to 1e-5):
            The epsilon used by the layer normalization layers.
        sca_use_query_residual (`bool`, *optional*, defaults to `True`):
            Whether to add a query residual in the spectral cross attention (SCA) layer of the encoder.
        use_query_residual (`float`, *optional*, defaults to `True`):
            Whether to add a query residual in the cross-attention layer of the encoder.
        position_encoding_type (`str`, *optional*, defaults to `'trainable'`):
            Type of position encoding to use. Can be one of {'trainable', 'alibi', 'alibit', 'rope', None}.
        num_max_positions (`int`, *optional*, defaults to 331):
            Maximum number of positions to use for the position encoding.
        vocab_size (`int`, *optional*, defaults to 262):
            Vocabulary size for the masked language modeling model.
        attention_to_channel (`bool`, defaults to `False`):
            Whether SCA should attend to the channel dimension. If False, attention to frequency bin dimension.
        ff_layer_type (`str`, *optional*, defaults to `'mlp'`):
            Type of feed-forward layer to use. Can be one of {'mlp', 'moe'}.
        ff_widening_factor (`int`, *optional*, defaults to 1):
            Widening factor for the feed-forward layers in the MLP/MoE.
        moe_num_experts (`int`, *optional*, defaults to 4):
            Number of experts to use in the mixture of experts (MoE) feed-forward layer. 
            Only used if `ff_layer_type` is set to `'moe'`.
        moe_topk (`int`, *optional*, defaults to 2):
            Number of top experts to use in the mixture of experts (MoE) feed-forward layer.
            Only used if `ff_layer_type` is set to `'moe'`.
        rope_type_sca (`str`, *optional*, defaults to `pixel`): Can be one of {'l'|lang', 'p'|'pixel', None}. 
            RoPE index type for SCA. Only used if `position_encoding_type` is set to `rope`.
        rope_type_latent (`str`, *optional*, defaults to `pixel`): Can be one of {'l'|'lang', 'p'|'pixel', None}.
            RoPE index type for Latent Transformer. Only used if `position_encoding_type` is set to `'rope'`.
        rope_type_temporal (`str`, *optional*, defaults to `lang`): Can be one of {'l'|'lang', 'p'|'pixel', None}.
            RoPE index type for Temporal Transformer. Only used if `position_encoding_type` is set to `'rope'`.     
        rope_apply_to_keys (`bool`, *optional*, defaults to `False`): Whether to apply RoPE to the keys in the
            self/cross-attention layers. Only used if `position_encoding_type` is set to `'rope'`.
        rope_partial_pe (`bool`, *optional*, defaults to `False`): Whether to use partial RoPE in the self/cross-attention.
            Only used if `position_encoding_type` is set to `'rope'`.
        rope_trainable (`bool`, *optional*, defaults to `False`): Whether to make the RoPE trainable. Only used if
    
    Example:

    ```python
    >>> from model.perceiver_mod import PerceiverTFEncodel, PerceiverTFConfig

    >>> # Initializing a Perceiver deepmind/language-perceiver style configuration
    >>> configuration = PerceiverTFConfig()

    >>> # Initializing a model from the deepmind/language-perceiver style configuration
    >>> model = PerceiverTFEncoder(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""
    model_type = "perceivertf"

    def __init__(
        self,
        num_latents=24,
        d_latents=128,
        d_model=128,
        kv_dim=128,
        num_blocks=3,
        num_self_attention_heads=8,
        num_cross_attention_heads=8,
        num_local_transformers_per_block=2,
        num_temporal_transformers_per_block=2,
        qk_channels=128,
        v_channels=128,
        cross_attention_shape_for_attention="q",
        # self_attention_widening_factor=1, ** DEPRECATED **
        # cross_attention_widening_factor=1, ** DEPRECATED **
        hidden_act="gelu",
        dropout_rate=0.1,
        initializer_range=0.02,
        layer_norm_type="layer_norm",
        layer_norm_eps=1e-5,
        sca_use_query_residual=True,
        use_query_residual=True,
        position_encoding_type="trainable",
        num_max_positions=330,
        vocab_size=1391,
        attention_to_channel=False,
        ff_layer_type="mlp",
        ff_widening_factor=1,
        moe_num_experts=4,
        moe_topk=2,
        rope_type_sca="pixel",
        rope_type_latent="pixel",
        rope_type_temporal="lang",
        rope_apply_to_keys=False,
        rope_partial_pe=False,
        rope_trainable=False,
        **kwargs,
    ):
        super().__init__(**kwargs)

        self.num_latents = num_latents
        self.d_latents = d_latents
        self.d_model = d_model
        self.kv_dim = kv_dim
        self.qk_channels = qk_channels
        self.v_channels = v_channels

        self.num_blocks = num_blocks
        self.num_self_attention_heads = num_self_attention_heads
        self.num_cross_attention_heads = num_cross_attention_heads
        self.num_local_transformers_per_block = num_local_transformers_per_block
        self.num_temporal_transformers_per_block = num_temporal_transformers_per_block
        self.sca_use_query_residual = sca_use_query_residual
        self.use_query_residual = use_query_residual
        self.position_encoding_type = position_encoding_type
        self.num_max_positions = num_max_positions
        # self.self_attention_widening_factor = self_attention_widening_factor
        # self.cross_attention_widening_factor = cross_attention_widening_factor
        self.cross_attention_shape_for_attention = cross_attention_shape_for_attention
        self.attention_to_channel = attention_to_channel
        self.ff_layer_type = ff_layer_type
        self.ff_widening_factor = ff_widening_factor
        self.moe_num_experts = moe_num_experts
        self.moe_topk = moe_topk
        self.rope_type_sca = rope_type_sca
        self.rope_type_latent = rope_type_latent
        self.rope_type_temporal = rope_type_temporal
        self.rope_apply_to_keys = rope_apply_to_keys
        self.rope_partial_pe = rope_partial_pe
        self.rope_trainable = rope_trainable

        self.hidden_act = hidden_act
        self.dropout_rate = dropout_rate
        self.initializer_range = initializer_range
        self.layer_norm_type = layer_norm_type
        self.layer_norm_eps = layer_norm_eps

        # masked language modeling attributes
        self.vocab_size = vocab_size


class PerceiverTFPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = PerceiverTFConfig
    base_model_prefix = "perceivertf"
    main_input_name = "inputs"

    def _init_weights(self, module):
        """Initialize the weights"""
        if isinstance(module, (nn.Linear, nn.Conv2d)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif hasattr(module, "latents"):
            module.latents.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif hasattr(module, "_pos_emb") and isinstance(module._pos_emb, nn.Parameter):
            # initialize PerceiverTFTrainablePE
            module._pos_emb.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif hasattr(module, "_pos_emb_temporal"):
            # initialize PerceiverTFTrainablePE
            module._pos_emb_temporal.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif hasattr(module, "slopes") and isinstance(module.slopes, nn.Parameter):
            # initialize AlibiPositionalBias
            module.reset_parameters()
        elif isinstance(module, nn.ParameterDict):
            for modality in module.keys():
                module[modality].data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        # elif hasattr(module, "position_embeddings") and isinstance(
        #         module, PerceiverTrainablePositionEncoding):
        #     module.position_embeddings.data.normal_(mean=0.0, std=self.config.initializer_range)


# Replace the 'ModelOutputWithCrossAttentions' with 'MoEModelOutputWithCrossAttentions' for MoE
@dataclass
class MoEModelOutputWithCrossAttentions(ModelOutput):
    """
    Base class for model's outputs, with potential hidden states and attentions.
    Plus, router_probs for Mixture of Experts models.

    Args:
        last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
            Sequence of hidden-states at the output of the last layer of the model.
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
            one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
        attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
        cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` and `config.add_cross_attention=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
            weighted average in the cross-attention heads.
        router_probs (`tuple(torch.FloatTensor)`, *optional*, returned when `output_router_probs=True` and `config.add_router_probs=True` is passed or when `config.output_router_probs=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, sequence_length, num_experts)`.

            Raw router probabilities that are computed by MoE routers, these terms are used to compute the auxiliary
            loss and the z_loss for Mixture of Experts models.
    """

    last_hidden_state: torch.FloatTensor = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None
    cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
    router_logits: Optional[Tuple[torch.FloatTensor]] = None