File size: 21,001 Bytes
db57889
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
import numpy as np
import torch
import torch.nn.functional as F


def l2_normalize(matrix):
    """
    L2 Normalize the matrix along its rows.

    Parameters:
        matrix (numpy.ndarray): The input matrix.

    Returns:
        numpy.ndarray: The L2 normalized matrix.
    """
    l2_norms = np.linalg.norm(matrix, axis=1, keepdims=True)
    normalized_matrix = matrix / l2_norms
    return normalized_matrix


def z_normalize(matrix):
    """
    Z-normalize the matrix along its rows (mean=0 and std=1).
    Z-normalization is also known as "standardization", and derives from z-score.
    Z = (X - mean) / std
    Z-nomarlized, each row has mean=0 and std=1. 

    Parameters:
        matrix (numpy.ndarray): The input matrix.

    Returns:
        numpy.ndarray: The Z normalized matrix.
    """
    mean = np.mean(matrix, axis=1, keepdims=True)
    std = np.std(matrix, axis=1, keepdims=True)
    normalized_matrix = (matrix - mean) / std
    return normalized_matrix


def l2_normalize_tensors(tensor_tuple):
    """
    Applies L2 normalization on the last two dimensions for each tensor in a tuple.

    Parameters:
        tensor_tuple (tuple of torch.Tensor): A tuple containing N tensors, each of shape (1, k, 30, 30).

    Returns:
        tuple of torch.Tensor: A tuple containing N L2-normalized tensors.
    """
    normalized_tensors = []
    for tensor in tensor_tuple:
        # Ensure the tensor is a floating-point type
        tensor = tensor.float()

        # Calculate L2 norm on the last two dimensions, keeping the dimensions using keepdim=True
        l2_norm = torch.linalg.norm(tensor, dim=(-2, -1), keepdim=True)

        # Apply L2 normalization
        normalized_tensor = tensor / (
            l2_norm + 1e-7)  # Small value to avoid division by zero

        normalized_tensors.append(normalized_tensor)

    return tuple(normalized_tensors)


def z_normalize_tensors(tensor_tuple):
    """
    Applies Z-normalization on the last two dimensions for each tensor in a tuple.

    Parameters:
        tensor_tuple (tuple of torch.Tensor): A tuple containing N tensors, each of shape (1, k, 30, 30).

    Returns:
        tuple of torch.Tensor: A tuple containing N Z-normalized tensors.
    """
    normalized_tensors = []
    for tensor in tensor_tuple:
        # Ensure the tensor is a floating-point type
        tensor = tensor.float()

        # Calculate mean and std on the last two dimensions
        mean = tensor.mean(dim=(-2, -1), keepdim=True)
        std = tensor.std(dim=(-2, -1), keepdim=True)

        # Apply Z-normalization
        normalized_tensor = (tensor - mean) / (
            std + 1e-7)  # Small value to avoid division by zero

        normalized_tensors.append(normalized_tensor)

    return tuple(normalized_tensors)


def apply_temperature_to_attention_tensors(tensor_tuple, temperature=1.0):
    """
    Applies temperature scaling to the attention weights in each tensor in a tuple.
    
    Parameters:
        tensor_tuple (tuple of torch.Tensor): A tuple containing N tensors, 
                                             each of shape (1, k, 30, 30).
        temperature (float): Temperature parameter to control the sharpness 
                             of the attention weights. Default is 1.0.
                             
    Returns:
        tuple of torch.Tensor: A tuple containing N tensors with scaled attention weights.
    """
    scaled_attention_tensors = []

    for tensor in tensor_tuple:
        # Ensure the tensor is a floating-point type
        tensor = tensor.float()

        # Flatten the last two dimensions
        flattened_tensor = tensor.reshape(1, tensor.shape[1],
                                          -1)  # Modified line here

        # Apply temperature scaling and softmax along the last dimension
        scaled_attention = flattened_tensor / temperature
        scaled_attention = F.softmax(scaled_attention, dim=-1)

        # Reshape to original shape
        scaled_attention = scaled_attention.view_as(tensor)

        scaled_attention_tensors.append(scaled_attention)

    return tuple(scaled_attention_tensors)


def shorten_att(tensor_tuple, length=30):
    shortend_tensors = []
    for tensor in tensor_tuple:
        shortend_tensors.append(tensor[:, :, :length, :length])
    return tuple(shortend_tensors)


def keep_top_k(matrix, k=6):
    """
    Keep only the top k values in each row, set the rest to 0.

    Parameters:
        matrix (numpy.ndarray): The input matrix.
        k (int): The number of top values to keep in each row.

    Returns:
        numpy.ndarray: The transformed matrix.
    """
    topk_indices_per_row = np.argpartition(matrix, -k, axis=1)[:, -k:]
    result_matrix = np.zeros_like(matrix)

    for i in range(matrix.shape[0]):
        result_matrix[i, topk_indices_per_row[i]] = matrix[
            i, topk_indices_per_row[i]]
    return result_matrix


def test_case_forward_enc_perceiver_tf_dec_t5():
    import torch
    from model.ymt3 import YourMT3
    from config.config import audio_cfg, model_cfg, shared_cfg
    model_cfg["encoder_type"] = "perceiver-tf"
    model_cfg["encoder"]["perceiver-tf"]["attention_to_channel"] = True
    model_cfg["encoder"]["perceiver-tf"]["num_latents"] = 24
    model_cfg["decoder_type"] = "t5"
    model_cfg["pre_decoder_type"] = "default"

    audio_cfg["codec"] = "spec"
    audio_cfg["hop_length"] = 300
    model = YourMT3(audio_cfg=audio_cfg, model_cfg=model_cfg)
    model.eval()

    # x = torch.randn(2, 1, 32767)
    # labels = torch.randint(0, 400, (2, 1024), requires_grad=False)

    # # forward
    # output = model.forward(x, labels)

    # # inference
    # result = model.inference(x, None)

    # display latents
    checkpoint = torch.load(
        "../logs/ymt3/ptf_all_cross_rebal5_spec300_xk2_amp0811_edr_005_attend_c_full_plus_b52/checkpoints/model.ckpt",
        map_location="cpu")
    state_dict = checkpoint['state_dict']
    new_state_dict = {
        k: v
        for k, v in state_dict.items() if 'pitchshift' not in k
    }
    model.load_state_dict(new_state_dict, strict=False)

    latents = model.encoder.latent_array.latents.detach().numpy()
    import matplotlib.pyplot as plt
    import numpy as np
    from sklearn.metrics.pairwise import cosine_similarity
    cos = cosine_similarity(latents)

    from utils.data_modules import AMTDataModule
    from einops import rearrange
    dm = AMTDataModule(data_preset_multi={"presets": ["slakh"]})
    dm.setup("test")
    dl = dm.test_dataloader()
    ds = list(dl.values())[0].dataset
    audio, notes, tokens, _ = ds.__getitem__(7)
    x = audio[[16], ::]
    label = tokens[[16], :]
    # spectrogram
    x_spec = model.spectrogram(x)
    plt.imshow(x_spec[0].detach().numpy().T, aspect='auto', origin='lower')
    plt.title("spectrogram")
    plt.xlabel('time step')
    plt.ylabel('frequency bin')
    plt.show()
    x_conv = model.pre_encoder(x_spec)
    # Create a larger figure
    plt.figure(
        figsize=(15,
                 10))  # Adjust these numbers as needed for width and height
    plt.subplot(2, 4, 1)
    plt.imshow(x_spec[0].detach().numpy().T, aspect='auto', origin='lower')
    plt.title("spectrogram")
    plt.xlabel('time step')
    plt.ylabel('frequency bin')
    plt.subplot(2, 4, 2)
    plt.imshow(x_conv[0][:, :, 0].detach().numpy().T,
               aspect='auto',
               origin='lower')
    plt.title("conv(spec), ch=0")
    plt.xlabel('time step')
    plt.ylabel('F')
    plt.subplot(2, 4, 3)
    plt.imshow(x_conv[0][:, :, 42].detach().numpy().T,
               aspect='auto',
               origin='lower')
    plt.title("ch=42")
    plt.xlabel('time step')
    plt.ylabel('F')
    plt.subplot(2, 4, 4)
    plt.imshow(x_conv[0][:, :, 80].detach().numpy().T,
               aspect='auto',
               origin='lower')
    plt.title("ch=80")
    plt.xlabel('time step')
    plt.ylabel('F')
    plt.subplot(2, 4, 5)
    plt.imshow(x_conv[0][:, :, 11].detach().numpy().T,
               aspect='auto',
               origin='lower')
    plt.title("ch=11")
    plt.xlabel('time step')
    plt.ylabel('F')
    plt.subplot(2, 4, 6)
    plt.imshow(x_conv[0][:, :, 20].detach().numpy().T,
               aspect='auto',
               origin='lower')
    plt.title("ch=20")
    plt.xlabel('time step')
    plt.ylabel('F')
    plt.subplot(2, 4, 7)
    plt.imshow(x_conv[0][:, :, 77].detach().numpy().T,
               aspect='auto',
               origin='lower')
    plt.title("ch=77")
    plt.xlabel('time step')
    plt.ylabel('F')
    plt.subplot(2, 4, 8)
    plt.imshow(x_conv[0][:, :, 90].detach().numpy().T,
               aspect='auto',
               origin='lower')
    plt.title("ch=90")
    plt.xlabel('time step')
    plt.ylabel('F')
    plt.tight_layout()
    plt.show()

    # encoding
    output = model.encoder(inputs_embeds=x_conv,
                           output_hidden_states=True,
                           output_attentions=True)
    enc_hs_all, att, catt = output["hidden_states"], output[
        "attentions"], output["cross_attentions"]
    enc_hs_last = enc_hs_all[2]

    # enc_hs: time-varying encoder hidden state
    plt.subplot(2, 3, 1)
    plt.imshow(enc_hs_all[0][0][:, :, 21].detach().numpy().T)
    plt.title('ENC_HS B0, d21')
    plt.colorbar(orientation='horizontal')
    plt.ylabel('latent k')
    plt.xlabel('t')
    plt.subplot(2, 3, 4)
    plt.imshow(enc_hs_all[0][0][:, :, 127].detach().numpy().T)
    plt.colorbar(orientation='horizontal')
    plt.title('B0, d127')
    plt.ylabel('latent k')
    plt.xlabel('t')
    plt.subplot(2, 3, 2)
    plt.imshow(enc_hs_all[1][0][:, :, 21].detach().numpy().T)
    plt.colorbar(orientation='horizontal')
    plt.title('B1, d21')
    plt.ylabel('latent k')
    plt.xlabel('t')
    plt.subplot(2, 3, 5)
    plt.imshow(enc_hs_all[1][0][:, :, 127].detach().numpy().T)
    plt.colorbar(orientation='horizontal')
    plt.title('B1, d127')
    plt.ylabel('latent k')
    plt.xlabel('t')
    plt.subplot(2, 3, 3)
    plt.imshow(enc_hs_all[2][0][:, :, 21].detach().numpy().T)
    plt.colorbar(orientation='horizontal')
    plt.title('B2, d21')
    plt.ylabel('latent k')
    plt.xlabel('t')
    plt.subplot(2, 3, 6)
    plt.imshow(enc_hs_all[2][0][:, :, 127].detach().numpy().T)
    plt.colorbar(orientation='horizontal')
    plt.title('B2, d127')
    plt.ylabel('latent k')
    plt.xlabel('t')
    plt.tight_layout()
    plt.show()

    enc_hs_proj = model.pre_decoder(enc_hs_last)
    plt.imshow(enc_hs_proj[0].detach().numpy())
    plt.title(
        'ENC_HS_PROJ: linear projection of encoder output, which is used for enc-dec cross attention'
    )
    plt.colorbar(orientation='horizontal')
    plt.ylabel('latent k')
    plt.xlabel('d')
    plt.show()

    plt.subplot(221)
    plt.imshow(enc_hs_all[2][0][0, :, :].detach().numpy(), aspect='auto')
    plt.title('enc_hs, t=0')
    plt.ylabel('latent k')
    plt.xlabel('d')
    plt.subplot(222)
    plt.imshow(enc_hs_all[2][0][10, :, :].detach().numpy(), aspect='auto')
    plt.title('enc_hs, t=10')
    plt.ylabel('latent k')
    plt.xlabel('d')
    plt.subplot(223)
    plt.imshow(enc_hs_all[2][0][20, :, :].detach().numpy(), aspect='auto')
    plt.title('enc_hs, t=20')
    plt.ylabel('latent k')
    plt.xlabel('d')
    plt.subplot(224)
    plt.imshow(enc_hs_all[2][0][30, :, :].detach().numpy(), aspect='auto')
    plt.title('enc_hs, t=30')
    plt.ylabel('latent k')
    plt.xlabel('d')
    plt.tight_layout()
    plt.show()

    # enc_hs correlation: which dim has most unique info?
    plt.subplot(1, 3, 1)
    a = rearrange(enc_hs_last, '1 t k d -> t (k d)').detach().numpy()
    plt.imshow(cosine_similarity(a))
    plt.title("enc hs, t x t cos_sim")
    plt.subplot(1, 3, 2)
    b = rearrange(enc_hs_last, '1 t k d -> k (t d)').detach().numpy()
    plt.imshow(cosine_similarity(b))
    plt.title("enc hs, k x k cos_sim")
    plt.subplot(1, 3, 3)
    c = rearrange(enc_hs_last, '1 t k d -> d (k t)').detach().numpy()
    plt.imshow(cosine_similarity(c))
    plt.title("cross att, d x d cos_sim")
    plt.tight_layout()
    plt.show()

    # enc latent
    plt.imshow(model.encoder.latent_array.latents.detach().numpy())
    plt.title('latent array')
    plt.xlabel('d')
    plt.ylabel('latent k')
    plt.show()

    # enc Spectral Cross Attention: (T x head x K x D). How latent K attends to conv channel C?
    plt.subplot(311)
    plt.imshow(
        torch.sum(torch.sum(catt[0][0], axis=0), axis=0).detach().numpy())
    plt.title('block=0')
    plt.ylabel('latent k')
    plt.xlabel('conv channel')
    plt.subplot(312)
    plt.imshow(
        torch.sum(torch.sum(catt[1][0], axis=0), axis=0).detach().numpy())
    plt.title('block=1')
    plt.ylabel('latent k')
    plt.xlabel('conv channel')
    plt.subplot(313)
    plt.imshow(
        torch.sum(torch.sum(catt[2][0], axis=0), axis=0).detach().numpy())
    plt.title('block=2')
    plt.ylabel('latent k')
    plt.xlabel('conv channel')
    plt.tight_layout()
    plt.show()
    # enc Latent Self-attention: How latent K attends to K?
    plt.subplot(231)
    plt.imshow(torch.sum(torch.sum(att[0][0], axis=1),
                         axis=0).detach().numpy(),
               origin='upper')
    plt.title('B0L0')
    plt.xlabel('latent k')
    plt.ylabel('latent k')
    plt.subplot(234)
    plt.imshow(torch.sum(torch.sum(att[0][1], axis=1),
                         axis=0).detach().numpy(),
               origin='upper')
    plt.title('B0L1')
    plt.xlabel('latent k')
    plt.ylabel('latent k')
    plt.subplot(232)
    plt.imshow(torch.sum(torch.sum(att[1][0], axis=1),
                         axis=0).detach().numpy(),
               origin='upper')
    plt.title('B1L0')
    plt.xlabel('latent k')
    plt.ylabel('latent k')
    plt.subplot(235)
    plt.imshow(torch.sum(torch.sum(att[1][1], axis=1),
                         axis=0).detach().numpy(),
               origin='upper')
    plt.title('B1L1')
    plt.xlabel('latent k')
    plt.ylabel('latent k')
    plt.subplot(233)
    plt.imshow(torch.sum(torch.sum(att[2][0], axis=1),
                         axis=0).detach().numpy(),
               origin='upper')
    plt.title('B2L0')
    plt.xlabel('latent k')
    plt.ylabel('latent k')
    plt.subplot(236)
    plt.imshow(torch.sum(torch.sum(att[2][1], axis=1),
                         axis=0).detach().numpy(),
               origin='upper')
    plt.title('B2L1')
    plt.xlabel('latent k')
    plt.ylabel('latent k')
    plt.tight_layout()
    plt.show()
    # Time varying, different head for latent self-attention
    plt.subplot(231)
    plt.imshow(att[0][0][30, 3, :, :].detach().numpy())
    plt.title('B0L0, t=30, Head=3')
    plt.colorbar(orientation='horizontal')
    plt.xlabel('k')
    plt.ylabel('k')
    plt.subplot(234)
    plt.imshow(att[0][1][30, 3, :, :].detach().numpy())
    plt.title('B0L1, t=30, Head=3')
    plt.colorbar(orientation='horizontal')
    plt.xlabel('k')
    plt.ylabel('k')
    plt.subplot(232)
    plt.imshow(att[1][0][30, 3, :, :].detach().numpy())
    plt.title('B1L0, t=30, Head=3')
    plt.colorbar(orientation='horizontal')
    plt.xlabel('k')
    plt.ylabel('k')
    plt.subplot(235)
    plt.imshow(att[1][1][30, 3, :, :].detach().numpy())
    plt.title('B1L1, t=30, Head=3')
    plt.colorbar(orientation='horizontal')
    plt.xlabel('k')
    plt.ylabel('k')
    plt.subplot(233)
    plt.imshow(att[2][0][30, 3, :, :].detach().numpy())
    plt.title('B2L0, t=30, Head=3')
    plt.colorbar(orientation='horizontal')
    plt.xlabel('k')
    plt.ylabel('k')
    plt.subplot(236)
    plt.imshow(att[2][1][30, 3, :, :].detach().numpy())
    plt.title('B2L1, t=30, Head=3')
    plt.colorbar(orientation='horizontal')
    plt.xlabel('k')
    plt.ylabel('k')
    plt.tight_layout()
    plt.show()
    plt.subplot(231)
    plt.imshow(att[0][0][30, 5, :, :].detach().numpy())
    plt.title('B0L0, t=30, Head=5')
    plt.colorbar(orientation='horizontal')
    plt.xlabel('k')
    plt.ylabel('k')
    plt.subplot(234)
    plt.imshow(att[0][1][30, 5, :, :].detach().numpy())
    plt.title('B0L1, t=30, Head=5')
    plt.colorbar(orientation='horizontal')
    plt.xlabel('k')
    plt.ylabel('k')
    plt.subplot(232)
    plt.imshow(att[1][0][30, 5, :, :].detach().numpy())
    plt.title('B1L0, t=30, Head=5')
    plt.colorbar(orientation='horizontal')
    plt.xlabel('k')
    plt.ylabel('k')
    plt.subplot(235)
    plt.imshow(att[1][1][30, 5, :, :].detach().numpy())
    plt.title('B1L1, t=30, Head=5')
    plt.colorbar(orientation='horizontal')
    plt.xlabel('k')
    plt.ylabel('k')
    plt.subplot(233)
    plt.imshow(att[2][0][30, 5, :, :].detach().numpy())
    plt.title('B2L0, t=30, Head=5')
    plt.colorbar(orientation='horizontal')
    plt.xlabel('k')
    plt.ylabel('k')
    plt.subplot(236)
    plt.imshow(att[2][1][30, 5, :, :].detach().numpy())
    plt.title('B2L1, t=30, Head=5')
    plt.colorbar(orientation='horizontal')
    plt.xlabel('k')
    plt.ylabel('k')
    plt.tight_layout()
    plt.show()

    # Temporal Self-attention: (K x H x T x T) How time t attends to time t?
    plt.subplot(231)
    plt.imshow(torch.sum(torch.sum(att[0][2], axis=1),
                         axis=0).detach().numpy(),
               origin='upper')
    plt.title('B0L2')
    plt.xlabel('t')
    plt.ylabel('t')
    plt.subplot(234)
    plt.imshow(torch.sum(torch.sum(att[0][3], axis=1),
                         axis=0).detach().numpy(),
               origin='upper')
    plt.title('B0L3')
    plt.xlabel('t')
    plt.ylabel('t')
    plt.subplot(232)
    plt.imshow(torch.sum(torch.sum(att[1][2], axis=1),
                         axis=0).detach().numpy(),
               origin='upper')
    plt.title('B1L2')
    plt.xlabel('t')
    plt.ylabel('t')
    plt.subplot(235)
    plt.imshow(torch.sum(torch.sum(att[1][3], axis=1),
                         axis=0).detach().numpy(),
               origin='upper')
    plt.title('B1L3')
    plt.xlabel('t')
    plt.ylabel('t')
    plt.subplot(233)
    plt.imshow(torch.sum(torch.sum(att[2][2], axis=1),
                         axis=0).detach().numpy(),
               origin='upper')
    plt.title('B2L2')
    plt.xlabel('t')
    plt.ylabel('t')
    plt.subplot(236)
    plt.imshow(torch.sum(torch.sum(att[2][3], axis=1),
                         axis=0).detach().numpy(),
               origin='upper')
    plt.title('B2L3')
    plt.xlabel('t')
    plt.ylabel('t')
    plt.tight_layout()
    plt.show()

    # decoding
    dec_input_ids = model.shift_right_fn(label)
    dec_inputs_embeds = model.embed_tokens(dec_input_ids)
    dec_output = model.decoder(inputs_embeds=dec_inputs_embeds,
                               encoder_hidden_states=enc_hs_proj,
                               output_attentions=True,
                               output_hidden_states=True,
                               return_dict=True)
    dec_att, dec_catt = dec_output.attentions, dec_output.cross_attentions
    dec_hs_all = dec_output.hidden_states

    # dec att
    plt.subplot(1, 2, 1)
    plt.imshow(torch.sum(dec_att[0][0], axis=0).detach().numpy())
    plt.title('decoder attention, layer0')
    plt.xlabel('decoder time step')
    plt.ylabel('decoder time step')
    plt.subplot(1, 2, 2)
    plt.imshow(torch.sum(dec_att[7][0], axis=0).detach().numpy())
    plt.title('decoder attention, layer8')
    plt.xlabel('decoder time step')
    plt.show()
    # dec catt
    plt.imshow(np.rot90((torch.sum(dec_catt[7][0],
                                   axis=0))[:1000, :].detach().numpy()),
               origin='upper',
               aspect='auto')
    plt.colorbar()
    plt.title('decoder cross att, layer8')
    plt.xlabel('decoder time step')
    plt.ylabel('encoder frame')
    plt.show()
    # dec catt by head with xxx
    dec_att_z = z_normalize_tensors(shorten_att(dec_att))
    plt.imshow(dec_att_z[0][0, 0, :, :].detach().numpy())
    from bertviz import head_view
    token = []
    for i in label[0, :30]:
        token.append(str(i))
    head_view(dec_att_z, tokens)

    # dec_hs
    plt.subplot(1, 2, 1)
    plt.imshow(dec_hs_all[0][0].detach().numpy(), origin='upper')
    plt.colorbar(orientation='horizontal')
    plt.title('decoder hidden state, layer1')
    plt.xlabel('hidden dim')
    plt.ylabel('time step')
    plt.subplot(1, 2, 2)
    plt.imshow(dec_hs_all[7][0].detach().numpy(), origin='upper')
    plt.colorbar(orientation='horizontal')
    plt.title('decoder hidden state, layer8')
    plt.xlabel('hidden dim')
    plt.show()

    # lm head
    logits = model.lm_head(dec_hs_all[0])
    plt.imshow(logits[0][0:200, :].detach().numpy(), origin='upper')
    plt.title('lm head softmax')
    plt.xlabel('vocab dim')
    plt.ylabel('time step')
    plt.xlim([1000, 1350])
    plt.show()
    softmax = torch.nn.Softmax(dim=2)
    logits_sm = softmax(logits)
    plt.imshow(logits_sm[0][0:200, :].detach().numpy(), origin='upper')
    plt.title('lm head softmax')
    plt.xlabel('vocab dim')
    plt.ylabel('time step')
    plt.xlim([1000, 1350])
    plt.show()