YourMT3 / utils /data_modules.py
Richhiey's picture
Add files using upload-large-folder tool
b3b3061 verified
raw
history blame
9.54 kB
# Copyright 2024 The YourMT3 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Please see the details in the LICENSE file.
""" data_modules.py """
from typing import Optional, Dict, List, Any
import os
import numpy as np
from pytorch_lightning import LightningDataModule
from pytorch_lightning.utilities import CombinedLoader
from utils.datasets_train import get_cache_data_loader
from utils.datasets_eval import get_eval_dataloader
from utils.datasets_helper import create_merged_train_dataset_info, get_list_of_weighted_random_samplers
from utils.task_manager import TaskManager
from config.config import shared_cfg
from config.config import audio_cfg as default_audio_cfg
from config.data_presets import data_preset_single_cfg, data_preset_multi_cfg
class AMTDataModule(LightningDataModule):
def __init__(
self,
data_home: Optional[os.PathLike] = None,
data_preset_multi: Dict[str, Any] = {
"presets": ["musicnet_mt3_synth_only"],
}, # only allowing multi_preset_cfg. single_preset_cfg should be converted to multi_preset_cfg
task_manager: TaskManager = TaskManager(task_name="mt3_full_plus"),
train_num_samples_per_epoch: Optional[int] = None,
train_random_amp_range: List[float] = [0.6, 1.2],
train_stem_iaug_prob: Optional[float] = 0.7,
train_stem_xaug_policy: Optional[Dict] = {
"max_k": 3,
"tau": 0.3,
"alpha": 1.0,
"max_subunit_stems": 12, # the number of subunit stems to be reduced to this number of stems
"p_include_singing":
0.8, # probability of including singing for cross augmented examples. if None, use base probaility.
"no_instr_overlap": True,
"no_drum_overlap": True,
"uhat_intra_stem_augment": True,
},
train_pitch_shift_range: Optional[List[int]] = None,
audio_cfg: Optional[Dict] = None) -> None:
super().__init__()
# check path existence
if data_home is None:
data_home = shared_cfg["PATH"]["data_home"]
if os.path.exists(data_home):
self.data_home = data_home
else:
raise ValueError(f"Invalid data_home: {data_home}")
self.preset_multi = data_preset_multi
self.preset_singles = []
# e.g. [{"dataset_name": ..., "train_split": ..., "validation_split":...,}, {...}]
for dp in self.preset_multi["presets"]:
if dp not in data_preset_single_cfg.keys():
raise ValueError("Invalid data_preset")
self.preset_singles.append(data_preset_single_cfg[dp])
# task manager
self.task_manager = task_manager
# train num samples per epoch, passed to the sampler
self.train_num_samples_per_epoch = train_num_samples_per_epoch
assert shared_cfg["BSZ"]["train_local"] % shared_cfg["BSZ"]["train_sub"] == 0
self.num_train_samplers = shared_cfg["BSZ"]["train_local"] // shared_cfg["BSZ"]["train_sub"]
# train augmentation parameters
self.train_random_amp_range = train_random_amp_range
self.train_stem_iaug_prob = train_stem_iaug_prob
self.train_stem_xaug_policy = train_stem_xaug_policy
self.train_pitch_shift_range = train_pitch_shift_range
# train data info
self.train_data_info = None # to be set in setup()
# validation/test max num of files
self.val_max_num_files = data_preset_multi.get("val_max_num_files", None)
self.test_max_num_files = data_preset_multi.get("test_max_num_files", None)
# audio config
self.audio_cfg = audio_cfg if audio_cfg is not None else default_audio_cfg
def set_merged_train_data_info(self) -> None:
"""Collect train datasets and create info...
self.train_dataset_info = {
"n_datasets": 0,
"n_notes_per_dataset": [],
"n_files_per_dataset": [],
"dataset_names": [], # dataset names by order of merging file lists
"train_split_names": [], # train split names by order of merging file lists
"index_ranges": [], # index ranges of each dataset in the merged file list
"dataset_weights": [], # pre-defined list of dataset weights for sampling, if available
"merged_file_list": {},
}
"""
self.train_data_info = create_merged_train_dataset_info(self.preset_multi)
print(
f"AMTDataModule: Added {len(self.train_data_info['merged_file_list'])} files from {self.train_data_info['n_datasets']} datasets to the training set."
)
def setup(self, stage: str):
"""
Prepare data args for the dataloaders to be used on each stage.
`stage` is automatically passed by pytorch lightning Trainer.
"""
if stage == "fit":
# Set up train data info
self.set_merged_train_data_info()
# Distributed Weighted random sampler for training
actual_train_num_samples_per_epoch = self.train_num_samples_per_epoch // shared_cfg["BSZ"][
"train_local"] if self.train_num_samples_per_epoch else None
samplers = get_list_of_weighted_random_samplers(num_samplers=self.num_train_samplers,
dataset_weights=self.train_data_info["dataset_weights"],
dataset_index_ranges=self.train_data_info["index_ranges"],
num_samples_per_epoch=actual_train_num_samples_per_epoch)
# Train dataloader arguments
self.train_data_args = []
for sampler in samplers:
self.train_data_args.append({
"dataset_name": None,
"split": None,
"file_list": self.train_data_info["merged_file_list"],
"sub_batch_size": shared_cfg["BSZ"]["train_sub"],
"task_manager": self.task_manager,
"random_amp_range": self.train_random_amp_range, # "0.1,0.5
"stem_iaug_prob": self.train_stem_iaug_prob,
"stem_xaug_policy": self.train_stem_xaug_policy,
"pitch_shift_range": self.train_pitch_shift_range,
"shuffle": True,
"sampler": sampler,
"audio_cfg": self.audio_cfg,
})
# Validation dataloader arguments
self.val_data_args = []
for preset_single in self.preset_singles:
if preset_single["validation_split"] != None:
self.val_data_args.append({
"dataset_name": preset_single["dataset_name"],
"split": preset_single["validation_split"],
"task_manager": self.task_manager,
# "tokenizer": self.task_manager.get_tokenizer(),
"max_num_files": self.val_max_num_files,
"audio_cfg": self.audio_cfg,
})
if stage == "test":
self.test_data_args = []
for preset_single in self.preset_singles:
if preset_single["test_split"] != None:
self.test_data_args.append({
"dataset_name": preset_single["dataset_name"],
"split": preset_single["test_split"],
"task_manager": self.task_manager,
"max_num_files": self.test_max_num_files,
"audio_cfg": self.audio_cfg,
})
def train_dataloader(self) -> Any:
loaders = {}
for i, args_dict in enumerate(self.train_data_args):
loaders[f"data_loader_{i}"] = get_cache_data_loader(**args_dict, dataloader_config=shared_cfg["DATAIO"])
return CombinedLoader(loaders, mode="min_size") # size is always identical
def val_dataloader(self) -> Any:
loaders = {}
for args_dict in self.val_data_args:
dataset_name = args_dict["dataset_name"]
loaders[dataset_name] = get_eval_dataloader(**args_dict, dataloader_config=shared_cfg["DATAIO"])
return loaders
def test_dataloader(self) -> Any:
loaders = {}
for args_dict in self.test_data_args:
dataset_name = args_dict["dataset_name"]
loaders[dataset_name] = get_eval_dataloader(**args_dict, dataloader_config=shared_cfg["DATAIO"])
return loaders
"""CombinedLoader in "sequential" mode returns dataloader_idx to the
trainer, which is used to get the dataset name in the logger. """
@property
def num_val_dataloaders(self) -> int:
return len(self.val_data_args)
@property
def num_test_dataloaders(self) -> int:
return len(self.test_data_args)
def get_val_dataset_name(self, dataloader_idx: int) -> str:
return self.val_data_args[dataloader_idx]["dataset_name"]
def get_test_dataset_name(self, dataloader_idx: int) -> str:
return self.test_data_args[dataloader_idx]["dataset_name"]