|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from nusacrowd.utils import schemas |
|
from nusacrowd.utils.configs import NusantaraConfig |
|
from nusacrowd.utils.constants import Tasks |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{sakti-icslp-2004, |
|
title = "Indonesian Speech Recognition for Hearing and Speaking Impaired People", |
|
author = "Sakti, Sakriani and Hutagaol, Paulus and Arman, Arry Akhmad and Nakamura, Satoshi", |
|
booktitle = "Proc. International Conference on Spoken Language Processing (INTERSPEECH - ICSLP)", |
|
year = "2004", |
|
pages = "1037--1040" |
|
address = "Jeju Island, Korea" |
|
} |
|
""" |
|
|
|
_DATASETNAME = "indspeech_teldialog_svcsr" |
|
|
|
_DESCRIPTION = """\ |
|
This is the first Indonesian speech dataset for small vocabulary continuous speech recognition (SVCSR). |
|
The data was developed by TELKOMRisTI (R&D Division, PT Telekomunikasi Indonesia) in collaboration with Advanced |
|
Telecommunication Research Institute International (ATR) Japan and Bandung Institute of Technology (ITB) under the |
|
Asia-Pacific Telecommunity (APT) project in 2004 [Sakti et al., 2004]. Although it was originally developed for |
|
a telecommunication system for hearing and speaking impaired people, it can be used for other applications, |
|
i.e., automatic call centers. Furthermore, as all speakers utter the same sentences, |
|
it can also be used for voice conversion tasks. |
|
|
|
The text is based on a word vocabulary which is derived from some necessary dialog calls, |
|
such as dialog calls with the 119 emergency department, 108 telephone information department, |
|
and ticket reservation department. In total, it consists of 20,000 utterances (about 18 hours of speech) from the |
|
70-word dialog vocabulary of 100 sentences (including single word sentences) each uttered by 200 speakers |
|
(100 Females, 100 Males). The age is limited to middle age (20-40 years), but they present a wide range of spoken |
|
dialects from different ethnic groups. The recording is conducted in parallel for both clean and telephone speech, |
|
but we open only the clean speech due to quality issues on telephone speech. |
|
Each audio file is a single-channel 16-bit PCM WAV with a sample rate of 16000 Hz. |
|
These utterances are equally split into training and test sets with 100 speakers (50 Females, 50 Males) in each set. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/s-sakti/data_indsp_teldialog_svcsr/" |
|
|
|
_LICENSE = "CC-BY-NC-SA-4.0" |
|
|
|
_LANGUAGES = ["ind"] |
|
_LOCAL = False |
|
|
|
URL_TEMPLATE = "https://raw.githubusercontent.com/s-sakti/data_indsp_teldialog_svcsr/main/" |
|
_URLS = { |
|
_DATASETNAME: {"lst": URL_TEMPLATE + "lst/", "speech": URL_TEMPLATE + "speech/", "text": URL_TEMPLATE + "text/"}, |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.SPEECH_RECOGNITION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_NUSANTARA_VERSION = "1.0.0" |
|
|
|
|
|
class INDspeechTELDIALOGSVCSR(datasets.GeneratorBasedBuilder): |
|
""" |
|
This is an Indonesian speech dataset on small vocabulary continuous speech recognition (SVCSR) from necessary |
|
dialog calls. The dataset loader is designed for speech recognition task. |
|
There are 20000 utterances (train: 10000, test:10000) uttered by 200 speakers (50 male 50 female each in train and |
|
test). |
|
""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
NUSANTARA_VERSION = datasets.Version(_NUSANTARA_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
NusantaraConfig( |
|
name="indspeech_teldialog_svcsr_source", |
|
version=SOURCE_VERSION, |
|
description="indspeech_teldialog_svcsr source schema", |
|
schema="source", |
|
subset_id="indspeech_teldialog_svcsr", |
|
), |
|
NusantaraConfig( |
|
name="indspeech_teldialog_svcsr_nusantara_sptext", |
|
version=NUSANTARA_VERSION, |
|
description="indspeech_teldialog_svcsr Nusantara schema", |
|
schema="nusantara_sptext", |
|
subset_id="indspeech_teldialog_svcsr", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "indspeech_teldialog_svcsr_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"speaker_id": datasets.Value("string"), |
|
"gender_id": datasets.Value("string"), |
|
"utterance_id": datasets.Value("string"), |
|
"audio": datasets.Audio(sampling_rate=16_000), |
|
"text": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.schema == "nusantara_sptext": |
|
features = schemas.speech_text_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
task_templates=[datasets.AutomaticSpeechRecognition(audio_column="audio", transcription_column="sentences")], |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
urls = _URLS[_DATASETNAME] |
|
data_dir = { |
|
"spk_data": {"train": dl_manager.download_and_extract(os.path.join(urls["lst"], "train_spk.lst")), "test": dl_manager.download_and_extract(os.path.join(urls["lst"], "test_spk.lst"))}, |
|
"wav_data": {"train": dl_manager.download_and_extract(os.path.join(urls["lst"], "train_wav.lst")), "test": dl_manager.download_and_extract(os.path.join(urls["lst"], "test_wav.lst"))}, |
|
"txt_data": dl_manager.download_and_extract(os.path.join(urls["text"], "text.zip")), |
|
} |
|
speakers = {} |
|
with open(data_dir["spk_data"]["train"], "r") as f: |
|
speakers["train"] = [sp.replace("\n", "") for sp in f.readlines()] |
|
f.close() |
|
with open(data_dir["spk_data"]["test"], "r") as f: |
|
speakers["test"] = [sp.replace("\n", "") for sp in f.readlines()] |
|
f.close() |
|
data_dir["speech_path"] = { |
|
"train": {sp: dl_manager.download_and_extract(os.path.join(urls["speech"], "train", sp + ".zip")) for sp in speakers["train"]}, |
|
"test": {sp: dl_manager.download_and_extract(os.path.join(urls["speech"], "test", sp + ".zip")) for sp in speakers["test"]}, |
|
} |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={ |
|
"filepath": data_dir["wav_data"]["train"], |
|
"audio_path": data_dir["speech_path"]["train"], |
|
"text_path": data_dir["txt_data"], |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": data_dir["wav_data"]["test"], |
|
"audio_path": data_dir["speech_path"]["test"], |
|
"text_path": data_dir["txt_data"], |
|
"split": "test", |
|
}, |
|
), |
|
] |
|
|
|
@staticmethod |
|
def text_process(utterance_txt_dir): |
|
with open(utterance_txt_dir + ".ANS", "r") as f: |
|
lines = [x.replace("\n", "") for x in f.readlines()] |
|
f.close() |
|
return " ".join(lines) |
|
|
|
def _generate_examples(self, filepath: Path, audio_path, text_path: Path, split: str) -> Tuple[int, Dict]: |
|
with open(filepath, "r") as f: |
|
filelist = [x.replace("\n", "") for x in f.readlines()] |
|
f.close() |
|
for fn in filelist: |
|
speaker_id = fn[:3] |
|
gender_id = fn[:1] |
|
utterance_id = fn[4:8] |
|
_id = fn.replace(".wav", "") |
|
text = self.text_process(os.path.join(text_path, utterance_id)) |
|
if self.config.schema == "source": |
|
yield _id, { |
|
"speaker_id": speaker_id, |
|
"gender_id": gender_id, |
|
"utterance_id": utterance_id, |
|
"audio": os.path.join(audio_path[speaker_id], fn), |
|
"text": text, |
|
} |
|
|
|
elif self.config.schema == "nusantara_sptext": |
|
yield _id, { |
|
"id": _id, |
|
"speaker_id": speaker_id, |
|
"text": text, |
|
"path": os.path.join(audio_path[speaker_id], fn), |
|
"audio": os.path.join(audio_path[speaker_id], fn), |
|
"metadata": { |
|
"speaker_age": None, |
|
"speaker_gender": gender_id, |
|
}, |
|
} |
|
|