File size: 8,368 Bytes
e7c6c7e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
from pathlib import Path
from typing import List, Tuple
import datasets
from seacrowd.sea_datasets.lio_and_central_flores import processing
from seacrowd.sea_datasets.lio_and_central_flores.path_url import _URLS_DICT
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks
_CITATION = """\
@misc{alexthesis2018,
author = {Alexander Elias},
title = {Lio and the Central Flores languages},
year = {2018},
month = {November},
address = {Rapenburg 70, 2311 EZ Leiden},
school = {Universiteit Leiden},
url = {https://studenttheses.universiteitleiden.nl/handle/1887/69452},
note = {Research Master's thesis},
}
"""
_DATASETNAME = "lio_and_central_flores"
_DESCRIPTION = """This dataset is a collection of language resources of Li'o, Ende, Nage, and
So'a which are collected in Ende, Flores, Eastern Nusa Tenggara. This dataset
is the dataset from the research MA thesis by Alexander Elias. Title: Lio and the Central Flores languages
"""
_HOMEPAGE = "https://archive.mpi.nl/tla/islandora/search/alexander%20elias?type=dismax&islandora_solr_search_navigation=0&f%5B0%5D=cmd.Contributor%3A%22Alexander%5C%20Elias%22"
_LICENSE = Licenses.UNKNOWN.value
_LANGUAGES = ["end", "ljl", "nxe", "eng"]
LANGUAGES_TO_FILENAME_MAP = {
"end": "ENDE",
"nxe": "NAGE",
"ljl": "LIO",
}
_LOCAL = False
_URLS = _URLS_DICT
_SUPPORTED_TASKS = [Tasks.MACHINE_TRANSLATION]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class LioAndCentralFloresDataset(datasets.GeneratorBasedBuilder):
"""This dataset is a collection of language resources of Li'o, Ende, Nage, and So'a"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
SEACROWD_SCHEMA_NAME = "t2t"
BUILDER_CONFIGS = [
# We only use source schema here for nage ("nxe") and eng because nage dataset only contain wordlist
# For "nxe" , include a separate configuration to handle word lists. It will be return nage only word list
SEACrowdConfig(name=f"{_DATASETNAME}_nxe_wordlist_source", version=SOURCE_VERSION, description=f"{_DATASETNAME} source schema", schema="source", subset_id=f"{_DATASETNAME}_nxe"),
# Additionally, include a configuration for English word lists in "nxe" datasets. It will be return eng only word corresponding to nage wordlist
SEACrowdConfig(name=f"{_DATASETNAME}_eng_wordlist_source", version=SOURCE_VERSION, description=f"{_DATASETNAME} source schema", schema="source", subset_id=f"{_DATASETNAME}_eng"),
]
# For other languages, except "nxe", use a standard source & seacrowd schema configuration
subset_names = sorted([f"{_DATASETNAME}_{lang}_eng" for lang in _LANGUAGES[:-2]]) + sorted([f"{_DATASETNAME}_eng_{lang}" for lang in _LANGUAGES[:-2]])
for name in subset_names:
# source schema
source_config = SEACrowdConfig(name=f"{name}_source", version=SOURCE_VERSION, description=f"{_DATASETNAME} source schema", schema="source", subset_id=name)
BUILDER_CONFIGS.append(source_config)
# seacrowd_t2t schema
seacrowd_config = SEACrowdConfig(name=f"{name}_seacrowd_{SEACROWD_SCHEMA_NAME}", version=SEACROWD_VERSION, description=f"{_DATASETNAME} SEACrowd schema", schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", subset_id=name)
BUILDER_CONFIGS.append(seacrowd_config)
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
if "wordlist" in self.config.name:
features = datasets.Features({"id": datasets.Value("string"), "word": datasets.Value("string")})
else:
features = datasets.Features({"source_sentence": datasets.Value("string"), "target_sentence": datasets.Value("string"), "source_lang": datasets.Value("string"), "target_lang": datasets.Value("string")})
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
if "nxe" not in self.config.name:
features = schemas.text2text_features
else:
raise ValueError("Invalid config schema")
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
dset_lang = None
for lang in _LANGUAGES[:-1]: # except eng because it exists in all subset names
if lang in self.config.name:
dset_lang = lang
break
if dset_lang is None:
raise ValueError("Invalid language name")
filepath = {k: v["text_path"] for k, v in _URLS[LANGUAGES_TO_FILENAME_MAP[dset_lang]].items()}
paths = dl_manager.download(filepath)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": paths,
"lang_1": self.config.name.split("_")[4],
"lang_2": self.config.name.split("_")[5]}
)
]
def _generate_examples(self, filepath: Path, lang_1: str, lang_2: str):
"""Yields examples as (key, example) tuples."""
if "wordlist" in self.config.name:
if "nxe" in self.config.name: # only nxe
_, words = self._get_word_(filepath)
else: # only eng
words, _ = self._get_word_(filepath)
for item in words:
for idx, word in enumerate(item):
row = {"id": str(idx), "word": word}
yield idx, row
else:
source_data, target_data = self._get_sentence_(filepath)
for idx, (eng_text, other_text) in enumerate(zip(source_data, target_data)):
if self.config.schema == "source":
if lang_1 == "eng":
example = {
"source_sentence": eng_text,
"target_sentence": other_text,
"source_lang": lang_1,
"target_lang": lang_2,
}
else:
example = {
"source_sentence": other_text,
"target_sentence": eng_text,
"source_lang": lang_1,
"target_lang": lang_2,
}
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
if lang_1 == "eng":
example = {
"id": str(idx),
"text_1": eng_text,
"text_2": other_text,
"text_1_name": lang_1,
"text_2_name": lang_2,
}
else:
example = {
"id": str(idx),
"text_1": other_text,
"text_2": eng_text,
"text_1_name": lang_1,
"text_2_name": lang_2,
}
yield idx, example
def _get_sentence_(self, path_dict) -> Tuple[List, List]:
source_data = []
target_data = []
for _, v in path_dict.items():
with open(v, "r", encoding="utf-8") as f:
data = f.readlines()
src, trg = processing.parse_text(data)
source_data.extend(src)
target_data.extend(trg)
return source_data, target_data
def _get_word_(self, path_dict) -> Tuple[List, List]:
eng_data, ind_data, nage_data = [], [], []
for _, v in path_dict.items():
with open(v, "r", encoding="utf-8") as f:
data = f.readlines()
eng_word, ind_word, nage_word = processing.parse_wordlist(data)
eng_data.append(eng_word)
ind_data.append(ind_word)
nage_data.append(nage_word)
return eng_data, nage_data
|