The dataset viewer is not available for this dataset.
Error code: ConfigNamesError Exception: ImportError Message: To be able to use SEACrowd/thai_depression, you need to install the following dependency: seacrowd. Please install it using 'pip install seacrowd' for instance. Traceback: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/dataset/config_names.py", line 66, in compute_config_names_response config_names = get_dataset_config_names( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 347, in get_dataset_config_names dataset_module = dataset_module_factory( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1914, in dataset_module_factory raise e1 from None File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1880, in dataset_module_factory return HubDatasetModuleFactoryWithScript( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1504, in get_module local_imports = _download_additional_modules( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 354, in _download_additional_modules raise ImportError( ImportError: To be able to use SEACrowd/thai_depression, you need to install the following dependency: seacrowd. Please install it using 'pip install seacrowd' for instance.
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
We present the first openly available corpus for detecting depression in Thai. Our corpus is compiled by expert verified cases of depression in several online blogs. We experiment with two different LSTM based models and two different BERT based models. We achieve a 77.53%% accuracy with a Thai BERT model in detecting depression. This establishes a good baseline for future researcher on the same corpus. Furthermore, we identify a need for Thai embeddings that have been trained on a more varied corpus than Wikipedia. Our corpus, code and trained models have been released openly on Zenodo.
Languages
tha
Supported Tasks
Emotion Classification
Dataset Usage
Using datasets
library
from datasets import load_dataset
dset = datasets.load_dataset("SEACrowd/thai_depression", trust_remote_code=True)
Using seacrowd
library
# Load the dataset using the default config
dset = sc.load_dataset("thai_depression", schema="seacrowd")
# Check all available subsets (config names) of the dataset
print(sc.available_config_names("thai_depression"))
# Load the dataset using a specific config
dset = sc.load_dataset_by_config_name(config_name="<config_name>")
More details on how to load the seacrowd
library can be found here.
Dataset Homepage
https://zenodo.org/records/4734552
Dataset Version
Source: 1.0.0. SEACrowd: 2024.06.20.
Dataset License
Creative Commons Attribution Non Commercial No Derivatives 4.0 (cc-by-nc-nd-4.0)
Citation
If you are using the Thai Depression dataloader in your work, please cite the following:
@inproceedings{hamalainen-etal-2021-detecting,
title = "Detecting Depression in Thai Blog Posts: a Dataset and a Baseline",
author = {H{"a}m{"a}l{"a}inen, Mika and
Patpong, Pattama and
Alnajjar, Khalid and
Partanen, Niko and
Rueter, Jack},
editor = "Xu, Wei and
Ritter, Alan and
Baldwin, Tim and
Rahimi, Afshin",
booktitle = "Proceedings of the Seventh Workshop on Noisy User-generated Text (W-NUT 2021)",
month = nov,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.wnut-1.3",
doi = "10.18653/v1/2021.wnut-1.3",
pages = "20--25",
abstract = "We present the first openly available corpus for detecting depression in Thai. Our corpus is compiled by expert verified cases of depression in several online blogs.
We experiment with two different LSTM based models and two different BERT based models. We achieve a 77.53%% accuracy with a Thai BERT model in detecting depression.
This establishes a good baseline for future researcher on the same corpus. Furthermore, we identify a need for Thai embeddings that have been trained on a more varied corpus than Wikipedia.
Our corpus, code and trained models have been released openly on Zenodo.",
}
@article{lovenia2024seacrowd,
title={SEACrowd: A Multilingual Multimodal Data Hub and Benchmark Suite for Southeast Asian Languages},
author={Holy Lovenia and Rahmad Mahendra and Salsabil Maulana Akbar and Lester James V. Miranda and Jennifer Santoso and Elyanah Aco and Akhdan Fadhilah and Jonibek Mansurov and Joseph Marvin Imperial and Onno P. Kampman and Joel Ruben Antony Moniz and Muhammad Ravi Shulthan Habibi and Frederikus Hudi and Railey Montalan and Ryan Ignatius and Joanito Agili Lopo and William Nixon and Börje F. Karlsson and James Jaya and Ryandito Diandaru and Yuze Gao and Patrick Amadeus and Bin Wang and Jan Christian Blaise Cruz and Chenxi Whitehouse and Ivan Halim Parmonangan and Maria Khelli and Wenyu Zhang and Lucky Susanto and Reynard Adha Ryanda and Sonny Lazuardi Hermawan and Dan John Velasco and Muhammad Dehan Al Kautsar and Willy Fitra Hendria and Yasmin Moslem and Noah Flynn and Muhammad Farid Adilazuarda and Haochen Li and Johanes Lee and R. Damanhuri and Shuo Sun and Muhammad Reza Qorib and Amirbek Djanibekov and Wei Qi Leong and Quyet V. Do and Niklas Muennighoff and Tanrada Pansuwan and Ilham Firdausi Putra and Yan Xu and Ngee Chia Tai and Ayu Purwarianti and Sebastian Ruder and William Tjhi and Peerat Limkonchotiwat and Alham Fikri Aji and Sedrick Keh and Genta Indra Winata and Ruochen Zhang and Fajri Koto and Zheng-Xin Yong and Samuel Cahyawijaya},
year={2024},
eprint={2406.10118},
journal={arXiv preprint arXiv: 2406.10118}
}
- Downloads last month
- 35