holylovenia
commited on
Upload thai_depression.py with huggingface_hub
Browse files- thai_depression.py +145 -0
thai_depression.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
from pathlib import Path
|
3 |
+
from typing import List
|
4 |
+
|
5 |
+
import datasets
|
6 |
+
|
7 |
+
from seacrowd.utils import schemas
|
8 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
9 |
+
from seacrowd.utils.constants import DEFAULT_SEACROWD_VIEW_NAME, DEFAULT_SOURCE_VIEW_NAME, Licenses, Tasks
|
10 |
+
|
11 |
+
_DATASETNAME = "thai_depression"
|
12 |
+
_SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME
|
13 |
+
_UNIFIED_VIEW_NAME = DEFAULT_SEACROWD_VIEW_NAME
|
14 |
+
|
15 |
+
_LANGUAGES = ["tha"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
|
16 |
+
_LOCAL = False
|
17 |
+
_CITATION = """\
|
18 |
+
@inproceedings{hamalainen-etal-2021-detecting,
|
19 |
+
title = "Detecting Depression in Thai Blog Posts: a Dataset and a Baseline",
|
20 |
+
author = {H{\"a}m{\"a}l{\"a}inen, Mika and
|
21 |
+
Patpong, Pattama and
|
22 |
+
Alnajjar, Khalid and
|
23 |
+
Partanen, Niko and
|
24 |
+
Rueter, Jack},
|
25 |
+
editor = "Xu, Wei and
|
26 |
+
Ritter, Alan and
|
27 |
+
Baldwin, Tim and
|
28 |
+
Rahimi, Afshin",
|
29 |
+
booktitle = "Proceedings of the Seventh Workshop on Noisy User-generated Text (W-NUT 2021)",
|
30 |
+
month = nov,
|
31 |
+
year = "2021",
|
32 |
+
address = "Online",
|
33 |
+
publisher = "Association for Computational Linguistics",
|
34 |
+
url = "https://aclanthology.org/2021.wnut-1.3",
|
35 |
+
doi = "10.18653/v1/2021.wnut-1.3",
|
36 |
+
pages = "20--25",
|
37 |
+
abstract = "We present the first openly available corpus for detecting depression in Thai. Our corpus is compiled by expert verified cases of depression in several online blogs.
|
38 |
+
We experiment with two different LSTM based models and two different BERT based models. We achieve a 77.53%% accuracy with a Thai BERT model in detecting depression.
|
39 |
+
This establishes a good baseline for future researcher on the same corpus. Furthermore, we identify a need for Thai embeddings that have been trained on a more varied corpus than Wikipedia.
|
40 |
+
Our corpus, code and trained models have been released openly on Zenodo.",
|
41 |
+
}
|
42 |
+
"""
|
43 |
+
|
44 |
+
_DESCRIPTION = """\
|
45 |
+
We present the first openly available corpus for detecting depression in Thai. Our corpus is compiled by expert verified cases of depression in several online blogs.
|
46 |
+
We experiment with two different LSTM based models and two different BERT based models. We achieve a 77.53%% accuracy with a Thai BERT model in detecting depression.
|
47 |
+
This establishes a good baseline for future researcher on the same corpus. Furthermore, we identify a need for Thai embeddings that have been trained on a more varied corpus than Wikipedia.
|
48 |
+
Our corpus, code and trained models have been released openly on Zenodo.
|
49 |
+
"""
|
50 |
+
|
51 |
+
_HOMEPAGE = "https://zenodo.org/records/4734552"
|
52 |
+
|
53 |
+
_LICENSE = Licenses.CC_BY_NC_ND_4_0.value
|
54 |
+
|
55 |
+
_URLs = "https://zenodo.org/records/4734552/files/data.zip?download=1"
|
56 |
+
|
57 |
+
_SUPPORTED_TASKS = [Tasks.EMOTION_CLASSIFICATION]
|
58 |
+
|
59 |
+
_SOURCE_VERSION = "1.0.0"
|
60 |
+
_SEACROWD_VERSION = "2024.06.20"
|
61 |
+
|
62 |
+
|
63 |
+
class ThaiDepressionDataset(datasets.GeneratorBasedBuilder):
|
64 |
+
"""Thai depression detection dataset."""
|
65 |
+
|
66 |
+
BUILDER_CONFIGS = [
|
67 |
+
SEACrowdConfig(
|
68 |
+
name=f"{_DATASETNAME}_source",
|
69 |
+
version=datasets.Version(_SOURCE_VERSION),
|
70 |
+
description=f"{_DATASETNAME} source schema",
|
71 |
+
schema="source",
|
72 |
+
subset_id=f"{_DATASETNAME}",
|
73 |
+
),
|
74 |
+
SEACrowdConfig(
|
75 |
+
name=f"{_DATASETNAME}_seacrowd_text",
|
76 |
+
version=datasets.Version(_SEACROWD_VERSION),
|
77 |
+
description=f"{_DATASETNAME} seacrowd schema",
|
78 |
+
schema="seacrowd_text",
|
79 |
+
subset_id=f"{_DATASETNAME}",
|
80 |
+
),
|
81 |
+
]
|
82 |
+
|
83 |
+
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
|
84 |
+
|
85 |
+
def _info(self):
|
86 |
+
if self.config.schema == "source":
|
87 |
+
features = datasets.Features(
|
88 |
+
{
|
89 |
+
"text": datasets.Value("string"),
|
90 |
+
"label": datasets.Value("string"),
|
91 |
+
}
|
92 |
+
)
|
93 |
+
elif self.config.schema == "seacrowd_text":
|
94 |
+
features = schemas.text_features(["depression", "no_depression"])
|
95 |
+
|
96 |
+
return datasets.DatasetInfo(
|
97 |
+
description=_DESCRIPTION,
|
98 |
+
features=features,
|
99 |
+
homepage=_HOMEPAGE,
|
100 |
+
license=_LICENSE,
|
101 |
+
citation=_CITATION,
|
102 |
+
)
|
103 |
+
|
104 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
105 |
+
path = Path(dl_manager.download_and_extract(_URLs))
|
106 |
+
data_files = {
|
107 |
+
"train": path / "splits/train.json",
|
108 |
+
"test": path / "splits/test.json",
|
109 |
+
"valid": path / "splits/valid.json",
|
110 |
+
}
|
111 |
+
|
112 |
+
return [
|
113 |
+
datasets.SplitGenerator(
|
114 |
+
name=datasets.Split.TRAIN,
|
115 |
+
gen_kwargs={"filepath": data_files["train"]},
|
116 |
+
),
|
117 |
+
datasets.SplitGenerator(
|
118 |
+
name=datasets.Split.VALIDATION,
|
119 |
+
gen_kwargs={"filepath": data_files["valid"]},
|
120 |
+
),
|
121 |
+
datasets.SplitGenerator(
|
122 |
+
name=datasets.Split.TEST,
|
123 |
+
gen_kwargs={"filepath": data_files["test"]},
|
124 |
+
),
|
125 |
+
]
|
126 |
+
|
127 |
+
def _parse_and_label(self, file_path):
|
128 |
+
with open(file_path, "r", encoding="utf-8") as file:
|
129 |
+
data = json.load(file)
|
130 |
+
|
131 |
+
parsed_data = []
|
132 |
+
for item in data:
|
133 |
+
parsed_data.append({"text": item[0], "label": item[1]})
|
134 |
+
|
135 |
+
return parsed_data
|
136 |
+
|
137 |
+
def _generate_examples(self, filepath: Path):
|
138 |
+
print("Reading ", filepath)
|
139 |
+
for id, row in enumerate(self._parse_and_label(filepath)):
|
140 |
+
if self.config.schema == "source":
|
141 |
+
yield id, {"text": row["text"], "label": row["label"]}
|
142 |
+
elif self.config.schema == "seacrowd_text":
|
143 |
+
yield id, {"id": str(id), "text": row["text"], "label": row["label"]}
|
144 |
+
else:
|
145 |
+
raise ValueError(f"Invalid config: {self.config.name}")
|