|
--- |
|
license: mit |
|
configs: |
|
- config_name: dataset |
|
data_files: "dataset.csv" |
|
--- |
|
# Description |
|
Binary Localization prediction is a binary classification task where each input protein *x* is mapped to a label *y* ∈ {0, 1}, corresponding to either "membrane-bound" or "soluble" . |
|
|
|
# Splits |
|
|
|
**Structure type:** AF2 |
|
|
|
The dataset is from [**DeepLoc: prediction of protein subcellular localization using deep learning**](https://academic.oup.com/bioinformatics/article/33/21/3387/3931857). We employ all proteins (proteins that lack AF2 structures are removed), and split them based on 70% structure similarity (see [ProteinShake](https://github.com/BorgwardtLab/proteinshake/tree/main)), with the number of training, validation and test set shown below: |
|
|
|
- Train: 6707 |
|
- Valid: 698 |
|
- Test: 807 |
|
|
|
# Label |
|
|
|
0: membrane-bound |
|
|
|
1: soluble |
|
|