metadata
license: mit
size_categories:
- 100K<n<1M
pretty_name: 'n'
dataset_info:
- config_name: c10-16
features:
- name: data
sequence: float16
- name: test_loss
dtype: float16
- name: test_acc
dtype: float16
- name: train_loss
dtype: float16
- name: train_acc
dtype: float16
splits:
- name: '0'
num_bytes: 73741472
num_examples: 2513
- name: '1'
num_bytes: 73741472
num_examples: 2513
- name: '2'
num_bytes: 73741472
num_examples: 2513
download_size: 208172765
dataset_size: 221224416
- config_name: default
features:
- name: data
sequence: float16
- name: test_loss
dtype: float16
- name: test_acc
dtype: float16
- name: train_loss
dtype: float16
- name: train_acc
dtype: float16
splits:
- name: '0'
num_bytes: 77328384
num_examples: 2688
- name: '1'
num_bytes: 77328384
num_examples: 2688
- name: '2'
num_bytes: 77328384
num_examples: 2688
download_size: 218320869
dataset_size: 231985152
- config_name: fm-16
features:
- name: data
sequence: float16
- name: test_loss
dtype: float16
- name: test_acc
dtype: float16
- name: train_loss
dtype: float16
- name: train_acc
dtype: float16
splits:
- name: '0'
num_bytes: 77328384
num_examples: 2688
- name: '1'
num_bytes: 77328384
num_examples: 2688
- name: '2'
num_bytes: 77328384
num_examples: 2688
- name: '3'
num_bytes: 77328384
num_examples: 2688
- name: '4'
num_bytes: 77328384
num_examples: 2688
- name: '5'
num_bytes: 77328384
num_examples: 2688
- name: '6'
num_bytes: 77328384
num_examples: 2688
- name: '7'
num_bytes: 77328384
num_examples: 2688
- name: '8'
num_bytes: 77328384
num_examples: 2688
- name: '9'
num_bytes: 77328384
num_examples: 2688
- name: '10'
num_bytes: 77328384
num_examples: 2688
- name: '11'
num_bytes: 77328384
num_examples: 2688
- name: '12'
num_bytes: 77328384
num_examples: 2688
- name: '13'
num_bytes: 77328384
num_examples: 2688
- name: '14'
num_bytes: 77328384
num_examples: 2688
- name: '15'
num_bytes: 77328384
num_examples: 2688
- name: '16'
num_bytes: 77328384
num_examples: 2688
- name: '17'
num_bytes: 77328384
num_examples: 2688
- name: '18'
num_bytes: 77328384
num_examples: 2688
- name: '19'
num_bytes: 77328384
num_examples: 2688
- name: '20'
num_bytes: 77328384
num_examples: 2688
- name: '21'
num_bytes: 77328384
num_examples: 2688
- name: '22'
num_bytes: 77328384
num_examples: 2688
- name: '23'
num_bytes: 77328384
num_examples: 2688
- name: '24'
num_bytes: 77328384
num_examples: 2688
- name: '25'
num_bytes: 77328384
num_examples: 2688
- name: '26'
num_bytes: 77328384
num_examples: 2688
- name: '27'
num_bytes: 77328384
num_examples: 2688
- name: '28'
num_bytes: 77328384
num_examples: 2688
- name: '29'
num_bytes: 77328384
num_examples: 2688
- name: '30'
num_bytes: 77328384
num_examples: 2688
- name: '31'
num_bytes: 77328384
num_examples: 2688
- name: '32'
num_bytes: 77328384
num_examples: 2688
- name: '33'
num_bytes: 77328384
num_examples: 2688
- name: '34'
num_bytes: 77328384
num_examples: 2688
- name: '35'
num_bytes: 77328384
num_examples: 2688
- name: '36'
num_bytes: 77328384
num_examples: 2688
- name: '37'
num_bytes: 77328384
num_examples: 2688
- name: '38'
num_bytes: 77328384
num_examples: 2688
- name: '39'
num_bytes: 77328384
num_examples: 2688
- name: '40'
num_bytes: 77328384
num_examples: 2688
- name: '41'
num_bytes: 77328384
num_examples: 2688
- name: '42'
num_bytes: 77328384
num_examples: 2688
- name: '43'
num_bytes: 77328384
num_examples: 2688
- name: '44'
num_bytes: 77328384
num_examples: 2688
- name: '45'
num_bytes: 77328384
num_examples: 2688
- name: '46'
num_bytes: 77328384
num_examples: 2688
- name: '47'
num_bytes: 77328384
num_examples: 2688
- name: '48'
num_bytes: 77328384
num_examples: 2688
- name: '49'
num_bytes: 77328384
num_examples: 2688
- name: '50'
num_bytes: 77328384
num_examples: 2688
- name: '51'
num_bytes: 77328384
num_examples: 2688
- name: '52'
num_bytes: 77328384
num_examples: 2688
- name: '53'
num_bytes: 77328384
num_examples: 2688
- name: '54'
num_bytes: 77328384
num_examples: 2688
- name: '55'
num_bytes: 77328384
num_examples: 2688
- name: '56'
num_bytes: 77328384
num_examples: 2688
- name: '57'
num_bytes: 77328384
num_examples: 2688
- name: '58'
num_bytes: 77328384
num_examples: 2688
- name: '59'
num_bytes: 77328384
num_examples: 2688
- name: '60'
num_bytes: 77328384
num_examples: 2688
- name: '61'
num_bytes: 77328384
num_examples: 2688
- name: '62'
num_bytes: 77328384
num_examples: 2688
- name: '63'
num_bytes: 77328384
num_examples: 2688
- name: '64'
num_bytes: 77328384
num_examples: 2688
- name: '65'
num_bytes: 77328384
num_examples: 2688
- name: '66'
num_bytes: 77328384
num_examples: 2688
- name: '67'
num_bytes: 77328384
num_examples: 2688
- name: '68'
num_bytes: 77328384
num_examples: 2688
- name: '69'
num_bytes: 77328384
num_examples: 2688
- name: '70'
num_bytes: 77328384
num_examples: 2688
- name: '71'
num_bytes: 77328384
num_examples: 2688
- name: '72'
num_bytes: 77328384
num_examples: 2688
- name: '73'
num_bytes: 77328384
num_examples: 2688
- name: '74'
num_bytes: 77328384
num_examples: 2688
- name: '75'
num_bytes: 77328384
num_examples: 2688
- name: '76'
num_bytes: 77328384
num_examples: 2688
- name: '77'
num_bytes: 77328384
num_examples: 2688
- name: '78'
num_bytes: 77328384
num_examples: 2688
- name: '79'
num_bytes: 77328384
num_examples: 2688
- name: '80'
num_bytes: 77328384
num_examples: 2688
- name: '81'
num_bytes: 77328384
num_examples: 2688
- name: '82'
num_bytes: 77328384
num_examples: 2688
- name: '83'
num_bytes: 77328384
num_examples: 2688
- name: '84'
num_bytes: 77328384
num_examples: 2688
- name: '85'
num_bytes: 77328384
num_examples: 2688
- name: '86'
num_bytes: 77328384
num_examples: 2688
- name: '87'
num_bytes: 77328384
num_examples: 2688
- name: '88'
num_bytes: 77328384
num_examples: 2688
- name: '89'
num_bytes: 77328384
num_examples: 2688
- name: '90'
num_bytes: 77328384
num_examples: 2688
- name: '91'
num_bytes: 77328384
num_examples: 2688
- name: '92'
num_bytes: 77328384
num_examples: 2688
- name: '93'
num_bytes: 77328384
num_examples: 2688
- name: '94'
num_bytes: 77328384
num_examples: 2688
- name: '95'
num_bytes: 77328384
num_examples: 2688
- name: '96'
num_bytes: 77328384
num_examples: 2688
- name: '97'
num_bytes: 77328384
num_examples: 2688
- name: '98'
num_bytes: 77328384
num_examples: 2688
- name: '99'
num_bytes: 77328384
num_examples: 2688
- name: '100'
num_bytes: 77328384
num_examples: 2688
- name: '101'
num_bytes: 77328384
num_examples: 2688
- name: '102'
num_bytes: 77328384
num_examples: 2688
- name: '103'
num_bytes: 77328384
num_examples: 2688
- name: '104'
num_bytes: 77328384
num_examples: 2688
- name: '105'
num_bytes: 77328384
num_examples: 2688
- name: '106'
num_bytes: 77328384
num_examples: 2688
- name: '107'
num_bytes: 77328384
num_examples: 2688
- name: '108'
num_bytes: 77328384
num_examples: 2688
- name: '109'
num_bytes: 77328384
num_examples: 2688
- name: '110'
num_bytes: 77328384
num_examples: 2688
- name: '111'
num_bytes: 77328384
num_examples: 2688
- name: '112'
num_bytes: 77328384
num_examples: 2688
- name: '113'
num_bytes: 77328384
num_examples: 2688
- name: '114'
num_bytes: 77328384
num_examples: 2688
- name: '115'
num_bytes: 77328384
num_examples: 2688
- name: '116'
num_bytes: 77328384
num_examples: 2688
- name: '117'
num_bytes: 77328384
num_examples: 2688
- name: '118'
num_bytes: 77328384
num_examples: 2688
- name: '119'
num_bytes: 77328384
num_examples: 2688
- name: '120'
num_bytes: 77328384
num_examples: 2688
- name: '121'
num_bytes: 77328384
num_examples: 2688
- name: '122'
num_bytes: 77328384
num_examples: 2688
- name: '123'
num_bytes: 77328384
num_examples: 2688
- name: '124'
num_bytes: 77328384
num_examples: 2688
- name: '125'
num_bytes: 77328384
num_examples: 2688
- name: '126'
num_bytes: 77328384
num_examples: 2688
- name: '127'
num_bytes: 77328384
num_examples: 2688
- name: '128'
num_bytes: 77328384
num_examples: 2688
- name: '129'
num_bytes: 77328384
num_examples: 2688
- name: '130'
num_bytes: 77328384
num_examples: 2688
- name: '131'
num_bytes: 77328384
num_examples: 2688
- name: '132'
num_bytes: 77328384
num_examples: 2688
- name: '133'
num_bytes: 77328384
num_examples: 2688
- name: '134'
num_bytes: 77328384
num_examples: 2688
- name: '135'
num_bytes: 77328384
num_examples: 2688
- name: '136'
num_bytes: 77328384
num_examples: 2688
- name: '137'
num_bytes: 77328384
num_examples: 2688
- name: '138'
num_bytes: 77328384
num_examples: 2688
- name: '139'
num_bytes: 77328384
num_examples: 2688
- name: '140'
num_bytes: 77328384
num_examples: 2688
- name: '141'
num_bytes: 77328384
num_examples: 2688
- name: '142'
num_bytes: 77328384
num_examples: 2688
- name: '143'
num_bytes: 77328384
num_examples: 2688
- name: '144'
num_bytes: 77328384
num_examples: 2688
- name: '145'
num_bytes: 77328384
num_examples: 2688
- name: '146'
num_bytes: 77328384
num_examples: 2688
- name: '147'
num_bytes: 77328384
num_examples: 2688
- name: '148'
num_bytes: 77328384
num_examples: 2688
- name: '149'
num_bytes: 77328384
num_examples: 2688
- name: '150'
num_bytes: 77328384
num_examples: 2688
- name: '151'
num_bytes: 77328384
num_examples: 2688
- name: '152'
num_bytes: 77328384
num_examples: 2688
- name: '153'
num_bytes: 77328384
num_examples: 2688
- name: '154'
num_bytes: 77328384
num_examples: 2688
- name: '155'
num_bytes: 77328384
num_examples: 2688
- name: '156'
num_bytes: 77328384
num_examples: 2688
- name: '157'
num_bytes: 77328384
num_examples: 2688
- name: '158'
num_bytes: 77328384
num_examples: 2688
- name: '159'
num_bytes: 77328384
num_examples: 2688
- name: '160'
num_bytes: 77328384
num_examples: 2688
- name: '161'
num_bytes: 77328384
num_examples: 2688
- name: '162'
num_bytes: 77328384
num_examples: 2688
- name: '163'
num_bytes: 77328384
num_examples: 2688
- name: '164'
num_bytes: 77328384
num_examples: 2688
- name: '165'
num_bytes: 77328384
num_examples: 2688
- name: '166'
num_bytes: 77328384
num_examples: 2688
- name: '167'
num_bytes: 77328384
num_examples: 2688
- name: '168'
num_bytes: 77328384
num_examples: 2688
- name: '169'
num_bytes: 77328384
num_examples: 2688
- name: '170'
num_bytes: 77328384
num_examples: 2688
- name: '171'
num_bytes: 77328384
num_examples: 2688
- name: '172'
num_bytes: 77328384
num_examples: 2688
- name: '173'
num_bytes: 77328384
num_examples: 2688
- name: '174'
num_bytes: 77328384
num_examples: 2688
- name: '175'
num_bytes: 77328384
num_examples: 2688
- name: '176'
num_bytes: 77328384
num_examples: 2688
- name: '177'
num_bytes: 77328384
num_examples: 2688
- name: '178'
num_bytes: 77328384
num_examples: 2688
- name: '179'
num_bytes: 77328384
num_examples: 2688
- name: '180'
num_bytes: 77328384
num_examples: 2688
- name: '181'
num_bytes: 77328384
num_examples: 2688
- name: '182'
num_bytes: 77328384
num_examples: 2688
- name: '183'
num_bytes: 77328384
num_examples: 2688
- name: '184'
num_bytes: 77328384
num_examples: 2688
- name: '185'
num_bytes: 77328384
num_examples: 2688
- name: '186'
num_bytes: 77328384
num_examples: 2688
- name: '187'
num_bytes: 77328384
num_examples: 2688
- name: '188'
num_bytes: 77328384
num_examples: 2688
- name: '189'
num_bytes: 77328384
num_examples: 2688
- name: '190'
num_bytes: 77328384
num_examples: 2688
- name: '191'
num_bytes: 77328384
num_examples: 2688
- name: '192'
num_bytes: 77328384
num_examples: 2688
- name: '193'
num_bytes: 77328384
num_examples: 2688
- name: '194'
num_bytes: 77328384
num_examples: 2688
- name: '195'
num_bytes: 77328384
num_examples: 2688
- name: '196'
num_bytes: 77328384
num_examples: 2688
- name: '197'
num_bytes: 77328384
num_examples: 2688
- name: '198'
num_bytes: 77328384
num_examples: 2688
- name: '199'
num_bytes: 77328384
num_examples: 2688
- name: '200'
num_bytes: 77328384
num_examples: 2688
- name: '201'
num_bytes: 77328384
num_examples: 2688
- name: '202'
num_bytes: 77328384
num_examples: 2688
- name: '203'
num_bytes: 77328384
num_examples: 2688
- name: '204'
num_bytes: 77328384
num_examples: 2688
- name: '205'
num_bytes: 77328384
num_examples: 2688
- name: '206'
num_bytes: 77328384
num_examples: 2688
- name: '207'
num_bytes: 77328384
num_examples: 2688
- name: '208'
num_bytes: 77328384
num_examples: 2688
- name: '209'
num_bytes: 77328384
num_examples: 2688
- name: '210'
num_bytes: 77328384
num_examples: 2688
- name: '211'
num_bytes: 77328384
num_examples: 2688
- name: '212'
num_bytes: 77328384
num_examples: 2688
- name: '213'
num_bytes: 77328384
num_examples: 2688
- name: '214'
num_bytes: 77328384
num_examples: 2688
- name: '215'
num_bytes: 77328384
num_examples: 2688
- name: '216'
num_bytes: 77328384
num_examples: 2688
- name: '217'
num_bytes: 77328384
num_examples: 2688
- name: '218'
num_bytes: 77328384
num_examples: 2688
- name: '219'
num_bytes: 77328384
num_examples: 2688
- name: '220'
num_bytes: 77328384
num_examples: 2688
- name: '221'
num_bytes: 77328384
num_examples: 2688
- name: '222'
num_bytes: 77328384
num_examples: 2688
- name: '223'
num_bytes: 77328384
num_examples: 2688
- name: '224'
num_bytes: 77328384
num_examples: 2688
- name: '225'
num_bytes: 77328384
num_examples: 2688
- name: '226'
num_bytes: 77328384
num_examples: 2688
- name: '227'
num_bytes: 77328384
num_examples: 2688
- name: '228'
num_bytes: 77328384
num_examples: 2688
- name: '229'
num_bytes: 77328384
num_examples: 2688
- name: '230'
num_bytes: 77328384
num_examples: 2688
- name: '231'
num_bytes: 77328384
num_examples: 2688
- name: '232'
num_bytes: 77328384
num_examples: 2688
- name: '233'
num_bytes: 77328384
num_examples: 2688
- name: '234'
num_bytes: 77328384
num_examples: 2688
- name: '235'
num_bytes: 77328384
num_examples: 2688
- name: '236'
num_bytes: 77328384
num_examples: 2688
- name: '237'
num_bytes: 77328384
num_examples: 2688
- name: '238'
num_bytes: 77328384
num_examples: 2688
- name: '239'
num_bytes: 77328384
num_examples: 2688
- name: '240'
num_bytes: 77328384
num_examples: 2688
- name: '241'
num_bytes: 77328384
num_examples: 2688
- name: '242'
num_bytes: 77328384
num_examples: 2688
- name: '243'
num_bytes: 77328384
num_examples: 2688
- name: '244'
num_bytes: 77328384
num_examples: 2688
- name: '245'
num_bytes: 77328384
num_examples: 2688
- name: '246'
num_bytes: 77328384
num_examples: 2688
- name: '247'
num_bytes: 77328384
num_examples: 2688
- name: '248'
num_bytes: 77328384
num_examples: 2688
- name: '249'
num_bytes: 77328384
num_examples: 2688
- name: '250'
num_bytes: 77328384
num_examples: 2688
- name: '251'
num_bytes: 77328384
num_examples: 2688
- name: '252'
num_bytes: 77328384
num_examples: 2688
- name: '253'
num_bytes: 77328384
num_examples: 2688
- name: '254'
num_bytes: 77328384
num_examples: 2688
- name: '255'
num_bytes: 77328384
num_examples: 2688
- name: '256'
num_bytes: 77328384
num_examples: 2688
- name: '257'
num_bytes: 77328384
num_examples: 2688
- name: '258'
num_bytes: 77328384
num_examples: 2688
- name: '259'
num_bytes: 77328384
num_examples: 2688
- name: '260'
num_bytes: 77328384
num_examples: 2688
- name: '261'
num_bytes: 77328384
num_examples: 2688
- name: '262'
num_bytes: 77328384
num_examples: 2688
- name: '263'
num_bytes: 77328384
num_examples: 2688
- name: '264'
num_bytes: 77328384
num_examples: 2688
- name: '265'
num_bytes: 77328384
num_examples: 2688
- name: '266'
num_bytes: 77328384
num_examples: 2688
- name: '267'
num_bytes: 77328384
num_examples: 2688
- name: '268'
num_bytes: 77328384
num_examples: 2688
- name: '269'
num_bytes: 77328384
num_examples: 2688
- name: '270'
num_bytes: 77328384
num_examples: 2688
- name: '271'
num_bytes: 77328384
num_examples: 2688
- name: '272'
num_bytes: 77328384
num_examples: 2688
- name: '273'
num_bytes: 77328384
num_examples: 2688
- name: '274'
num_bytes: 77328384
num_examples: 2688
- name: '275'
num_bytes: 77328384
num_examples: 2688
- name: '276'
num_bytes: 77328384
num_examples: 2688
- name: '277'
num_bytes: 77328384
num_examples: 2688
- name: '278'
num_bytes: 77328384
num_examples: 2688
- name: '279'
num_bytes: 77328384
num_examples: 2688
- name: '280'
num_bytes: 77328384
num_examples: 2688
- name: '281'
num_bytes: 77328384
num_examples: 2688
- name: '282'
num_bytes: 77328384
num_examples: 2688
- name: '283'
num_bytes: 77328384
num_examples: 2688
- name: '284'
num_bytes: 77328384
num_examples: 2688
- name: '285'
num_bytes: 77328384
num_examples: 2688
- name: '286'
num_bytes: 77328384
num_examples: 2688
- name: '287'
num_bytes: 77328384
num_examples: 2688
- name: '288'
num_bytes: 77328384
num_examples: 2688
- name: '289'
num_bytes: 77328384
num_examples: 2688
- name: '290'
num_bytes: 77328384
num_examples: 2688
- name: '291'
num_bytes: 77328384
num_examples: 2688
- name: '292'
num_bytes: 77328384
num_examples: 2688
- name: '293'
num_bytes: 77328384
num_examples: 2688
- name: '294'
num_bytes: 77328384
num_examples: 2688
- name: '295'
num_bytes: 77328384
num_examples: 2688
- name: '296'
num_bytes: 77328384
num_examples: 2688
- name: '297'
num_bytes: 77328384
num_examples: 2688
- name: '298'
num_bytes: 77328384
num_examples: 2688
- name: '299'
num_bytes: 77328384
num_examples: 2688
download_size: 21834229494
dataset_size: 23198515200
- config_name: lm1b-2-32
features:
- name: data
sequence: float16
- name: train_loss
dtype: float16
splits:
- name: '0'
num_bytes: 413283816
num_examples: 124
- name: '1'
num_bytes: 413283816
num_examples: 124
- name: '2'
num_bytes: 413283816
num_examples: 124
download_size: 1163916640
dataset_size: 1239851448
- config_name: lm1b-3-24
features:
- name: data
sequence: float16
- name: train_loss
dtype: float16
splits:
- name: '0'
num_bytes: 310611816
num_examples: 124
- name: '1'
num_bytes: 310611816
num_examples: 124
- name: '2'
num_bytes: 310611816
num_examples: 124
download_size: 874816124
dataset_size: 931835448
configs:
- config_name: c10-16
data_files:
- split: '0'
path: c10-16/0-*
- split: '1'
path: c10-16/1-*
- split: '2'
path: c10-16/2-*
- config_name: default
data_files:
- split: '0'
path: data/0-*
- split: '1'
path: data/1-*
- split: '2'
path: data/2-*
- config_name: fm-16
data_files:
- split: '0'
path: fm-16/0-*
- split: '1'
path: fm-16/1-*
- split: '2'
path: fm-16/2-*
- split: '3'
path: fm-16/3-*
- split: '4'
path: fm-16/4-*
- split: '5'
path: fm-16/5-*
- split: '6'
path: fm-16/6-*
- split: '7'
path: fm-16/7-*
- split: '8'
path: fm-16/8-*
- split: '9'
path: fm-16/9-*
- split: '10'
path: fm-16/10-*
- split: '11'
path: fm-16/11-*
- split: '12'
path: fm-16/12-*
- split: '13'
path: fm-16/13-*
- split: '14'
path: fm-16/14-*
- split: '15'
path: fm-16/15-*
- split: '16'
path: fm-16/16-*
- split: '17'
path: fm-16/17-*
- split: '18'
path: fm-16/18-*
- split: '19'
path: fm-16/19-*
- split: '20'
path: fm-16/20-*
- split: '21'
path: fm-16/21-*
- split: '22'
path: fm-16/22-*
- split: '23'
path: fm-16/23-*
- split: '24'
path: fm-16/24-*
- split: '25'
path: fm-16/25-*
- split: '26'
path: fm-16/26-*
- split: '27'
path: fm-16/27-*
- split: '28'
path: fm-16/28-*
- split: '29'
path: fm-16/29-*
- split: '30'
path: fm-16/30-*
- split: '31'
path: fm-16/31-*
- split: '32'
path: fm-16/32-*
- split: '33'
path: fm-16/33-*
- split: '34'
path: fm-16/34-*
- split: '35'
path: fm-16/35-*
- split: '36'
path: fm-16/36-*
- split: '37'
path: fm-16/37-*
- split: '38'
path: fm-16/38-*
- split: '39'
path: fm-16/39-*
- split: '40'
path: fm-16/40-*
- split: '41'
path: fm-16/41-*
- split: '42'
path: fm-16/42-*
- split: '43'
path: fm-16/43-*
- split: '44'
path: fm-16/44-*
- split: '45'
path: fm-16/45-*
- split: '46'
path: fm-16/46-*
- split: '47'
path: fm-16/47-*
- split: '48'
path: fm-16/48-*
- split: '49'
path: fm-16/49-*
- split: '50'
path: fm-16/50-*
- split: '51'
path: fm-16/51-*
- split: '52'
path: fm-16/52-*
- split: '53'
path: fm-16/53-*
- split: '54'
path: fm-16/54-*
- split: '55'
path: fm-16/55-*
- split: '56'
path: fm-16/56-*
- split: '57'
path: fm-16/57-*
- split: '58'
path: fm-16/58-*
- split: '59'
path: fm-16/59-*
- split: '60'
path: fm-16/60-*
- split: '61'
path: fm-16/61-*
- split: '62'
path: fm-16/62-*
- split: '63'
path: fm-16/63-*
- split: '64'
path: fm-16/64-*
- split: '65'
path: fm-16/65-*
- split: '66'
path: fm-16/66-*
- split: '67'
path: fm-16/67-*
- split: '68'
path: fm-16/68-*
- split: '69'
path: fm-16/69-*
- split: '70'
path: fm-16/70-*
- split: '71'
path: fm-16/71-*
- split: '72'
path: fm-16/72-*
- split: '73'
path: fm-16/73-*
- split: '74'
path: fm-16/74-*
- split: '75'
path: fm-16/75-*
- split: '76'
path: fm-16/76-*
- split: '77'
path: fm-16/77-*
- split: '78'
path: fm-16/78-*
- split: '79'
path: fm-16/79-*
- split: '80'
path: fm-16/80-*
- split: '81'
path: fm-16/81-*
- split: '82'
path: fm-16/82-*
- split: '83'
path: fm-16/83-*
- split: '84'
path: fm-16/84-*
- split: '85'
path: fm-16/85-*
- split: '86'
path: fm-16/86-*
- split: '87'
path: fm-16/87-*
- split: '88'
path: fm-16/88-*
- split: '89'
path: fm-16/89-*
- split: '90'
path: fm-16/90-*
- split: '91'
path: fm-16/91-*
- split: '92'
path: fm-16/92-*
- split: '93'
path: fm-16/93-*
- split: '94'
path: fm-16/94-*
- split: '95'
path: fm-16/95-*
- split: '96'
path: fm-16/96-*
- split: '97'
path: fm-16/97-*
- split: '98'
path: fm-16/98-*
- split: '99'
path: fm-16/99-*
- split: '100'
path: fm-16/100-*
- split: '101'
path: fm-16/101-*
- split: '102'
path: fm-16/102-*
- split: '103'
path: fm-16/103-*
- split: '104'
path: fm-16/104-*
- split: '105'
path: fm-16/105-*
- split: '106'
path: fm-16/106-*
- split: '107'
path: fm-16/107-*
- split: '108'
path: fm-16/108-*
- split: '109'
path: fm-16/109-*
- split: '110'
path: fm-16/110-*
- split: '111'
path: fm-16/111-*
- split: '112'
path: fm-16/112-*
- split: '113'
path: fm-16/113-*
- split: '114'
path: fm-16/114-*
- split: '115'
path: fm-16/115-*
- split: '116'
path: fm-16/116-*
- split: '117'
path: fm-16/117-*
- split: '118'
path: fm-16/118-*
- split: '119'
path: fm-16/119-*
- split: '120'
path: fm-16/120-*
- split: '121'
path: fm-16/121-*
- split: '122'
path: fm-16/122-*
- split: '123'
path: fm-16/123-*
- split: '124'
path: fm-16/124-*
- split: '125'
path: fm-16/125-*
- split: '126'
path: fm-16/126-*
- split: '127'
path: fm-16/127-*
- split: '128'
path: fm-16/128-*
- split: '129'
path: fm-16/129-*
- split: '130'
path: fm-16/130-*
- split: '131'
path: fm-16/131-*
- split: '132'
path: fm-16/132-*
- split: '133'
path: fm-16/133-*
- split: '134'
path: fm-16/134-*
- split: '135'
path: fm-16/135-*
- split: '136'
path: fm-16/136-*
- split: '137'
path: fm-16/137-*
- split: '138'
path: fm-16/138-*
- split: '139'
path: fm-16/139-*
- split: '140'
path: fm-16/140-*
- split: '141'
path: fm-16/141-*
- split: '142'
path: fm-16/142-*
- split: '143'
path: fm-16/143-*
- split: '144'
path: fm-16/144-*
- split: '145'
path: fm-16/145-*
- split: '146'
path: fm-16/146-*
- split: '147'
path: fm-16/147-*
- split: '148'
path: fm-16/148-*
- split: '149'
path: fm-16/149-*
- split: '150'
path: fm-16/150-*
- split: '151'
path: fm-16/151-*
- split: '152'
path: fm-16/152-*
- split: '153'
path: fm-16/153-*
- split: '154'
path: fm-16/154-*
- split: '155'
path: fm-16/155-*
- split: '156'
path: fm-16/156-*
- split: '157'
path: fm-16/157-*
- split: '158'
path: fm-16/158-*
- split: '159'
path: fm-16/159-*
- split: '160'
path: fm-16/160-*
- split: '161'
path: fm-16/161-*
- split: '162'
path: fm-16/162-*
- split: '163'
path: fm-16/163-*
- split: '164'
path: fm-16/164-*
- split: '165'
path: fm-16/165-*
- split: '166'
path: fm-16/166-*
- split: '167'
path: fm-16/167-*
- split: '168'
path: fm-16/168-*
- split: '169'
path: fm-16/169-*
- split: '170'
path: fm-16/170-*
- split: '171'
path: fm-16/171-*
- split: '172'
path: fm-16/172-*
- split: '173'
path: fm-16/173-*
- split: '174'
path: fm-16/174-*
- split: '175'
path: fm-16/175-*
- split: '176'
path: fm-16/176-*
- split: '177'
path: fm-16/177-*
- split: '178'
path: fm-16/178-*
- split: '179'
path: fm-16/179-*
- split: '180'
path: fm-16/180-*
- split: '181'
path: fm-16/181-*
- split: '182'
path: fm-16/182-*
- split: '183'
path: fm-16/183-*
- split: '184'
path: fm-16/184-*
- split: '185'
path: fm-16/185-*
- split: '186'
path: fm-16/186-*
- split: '187'
path: fm-16/187-*
- split: '188'
path: fm-16/188-*
- split: '189'
path: fm-16/189-*
- split: '190'
path: fm-16/190-*
- split: '191'
path: fm-16/191-*
- split: '192'
path: fm-16/192-*
- split: '193'
path: fm-16/193-*
- split: '194'
path: fm-16/194-*
- split: '195'
path: fm-16/195-*
- split: '196'
path: fm-16/196-*
- split: '197'
path: fm-16/197-*
- split: '198'
path: fm-16/198-*
- split: '199'
path: fm-16/199-*
- split: '200'
path: fm-16/200-*
- split: '201'
path: fm-16/201-*
- split: '202'
path: fm-16/202-*
- split: '203'
path: fm-16/203-*
- split: '204'
path: fm-16/204-*
- split: '205'
path: fm-16/205-*
- split: '206'
path: fm-16/206-*
- split: '207'
path: fm-16/207-*
- split: '208'
path: fm-16/208-*
- split: '209'
path: fm-16/209-*
- split: '210'
path: fm-16/210-*
- split: '211'
path: fm-16/211-*
- split: '212'
path: fm-16/212-*
- split: '213'
path: fm-16/213-*
- split: '214'
path: fm-16/214-*
- split: '215'
path: fm-16/215-*
- split: '216'
path: fm-16/216-*
- split: '217'
path: fm-16/217-*
- split: '218'
path: fm-16/218-*
- split: '219'
path: fm-16/219-*
- split: '220'
path: fm-16/220-*
- split: '221'
path: fm-16/221-*
- split: '222'
path: fm-16/222-*
- split: '223'
path: fm-16/223-*
- split: '224'
path: fm-16/224-*
- split: '225'
path: fm-16/225-*
- split: '226'
path: fm-16/226-*
- split: '227'
path: fm-16/227-*
- split: '228'
path: fm-16/228-*
- split: '229'
path: fm-16/229-*
- split: '230'
path: fm-16/230-*
- split: '231'
path: fm-16/231-*
- split: '232'
path: fm-16/232-*
- split: '233'
path: fm-16/233-*
- split: '234'
path: fm-16/234-*
- split: '235'
path: fm-16/235-*
- split: '236'
path: fm-16/236-*
- split: '237'
path: fm-16/237-*
- split: '238'
path: fm-16/238-*
- split: '239'
path: fm-16/239-*
- split: '240'
path: fm-16/240-*
- split: '241'
path: fm-16/241-*
- split: '242'
path: fm-16/242-*
- split: '243'
path: fm-16/243-*
- split: '244'
path: fm-16/244-*
- split: '245'
path: fm-16/245-*
- split: '246'
path: fm-16/246-*
- split: '247'
path: fm-16/247-*
- split: '248'
path: fm-16/248-*
- split: '249'
path: fm-16/249-*
- split: '250'
path: fm-16/250-*
- split: '251'
path: fm-16/251-*
- split: '252'
path: fm-16/252-*
- split: '253'
path: fm-16/253-*
- split: '254'
path: fm-16/254-*
- split: '255'
path: fm-16/255-*
- split: '256'
path: fm-16/256-*
- split: '257'
path: fm-16/257-*
- split: '258'
path: fm-16/258-*
- split: '259'
path: fm-16/259-*
- split: '260'
path: fm-16/260-*
- split: '261'
path: fm-16/261-*
- split: '262'
path: fm-16/262-*
- split: '263'
path: fm-16/263-*
- split: '264'
path: fm-16/264-*
- split: '265'
path: fm-16/265-*
- split: '266'
path: fm-16/266-*
- split: '267'
path: fm-16/267-*
- split: '268'
path: fm-16/268-*
- split: '269'
path: fm-16/269-*
- split: '270'
path: fm-16/270-*
- split: '271'
path: fm-16/271-*
- split: '272'
path: fm-16/272-*
- split: '273'
path: fm-16/273-*
- split: '274'
path: fm-16/274-*
- split: '275'
path: fm-16/275-*
- split: '276'
path: fm-16/276-*
- split: '277'
path: fm-16/277-*
- split: '278'
path: fm-16/278-*
- split: '279'
path: fm-16/279-*
- split: '280'
path: fm-16/280-*
- split: '281'
path: fm-16/281-*
- split: '282'
path: fm-16/282-*
- split: '283'
path: fm-16/283-*
- split: '284'
path: fm-16/284-*
- split: '285'
path: fm-16/285-*
- split: '286'
path: fm-16/286-*
- split: '287'
path: fm-16/287-*
- split: '288'
path: fm-16/288-*
- split: '289'
path: fm-16/289-*
- split: '290'
path: fm-16/290-*
- split: '291'
path: fm-16/291-*
- split: '292'
path: fm-16/292-*
- split: '293'
path: fm-16/293-*
- split: '294'
path: fm-16/294-*
- split: '295'
path: fm-16/295-*
- split: '296'
path: fm-16/296-*
- split: '297'
path: fm-16/297-*
- split: '298'
path: fm-16/298-*
- split: '299'
path: fm-16/299-*
- config_name: lm1b-2-32
data_files:
- split: '0'
path: lm1b-2-32/0-*
- split: '1'
path: lm1b-2-32/1-*
- split: '2'
path: lm1b-2-32/2-*
- config_name: lm1b-3-24
data_files:
- split: '0'
path: lm1b-3-24/0-*
- split: '1'
path: lm1b-3-24/1-*
- split: '2'
path: lm1b-3-24/2-*
The dataset is being prepared and uploaded
This is the dataset of trained neural network checkpoints used to meta-train the NiNo model from https://github.com/SamsungSAILMontreal/nino/.
It contains 1000 models in total:
- 300 small convnets with 3 layers and 16, 32 and 32 channels (14,378 parameters in each model), trained on FashionMNIST (FM-16)
- 300 small convnets with 3 layers and 16, 32 and 32 channels (14,666 parameters in each model), trained on CIFAR10 (C10-16)
- 200 small GPT2-based transformers with 3 layers, 24 hidden units and 3 heads (1,252,464 parameters in each model), trained on LM1B (LM1B-3-24)
- 200 small GPT2-based transformers with 2 layers, 32 hidden units and 2 heads (1,666,464 parameters in each model), trained on LM1B (LM1B-2-32)
Each model contains multiple checkpoints:
- 2688 checkpoints per each model in FM-16 (corresponding to every 4 steps of Adam)
- 2513 checkpoints per each model in C10-16 (corresponding to every 4 steps of Adam)
- 124 checkpoints per each model in LM1B-3-24 (corresponding to every 200 steps of Adam)
- 124 checkpoints per each model in LM1B-2-32 (corresponding to every 200 steps of Adam)
In total, there are 1,609,900 model checkpoints.
The dataset also contains the training loss for each checkpoint, for FM-16 and C10-16 it also contains training accuracy, test loss, test accuracy.
The dataset corresponds to the first 4 columns (in-distribution tasks) in Table 1 below.
This Table is from the Accelerating Training with Neuron Interaction and Nowcasting Networks
paper, see https://arxiv.org/abs/2409.04434 for details.