Datasets:

ArXiv:
License:
nino_metatrain / README.md
bknyaz's picture
Upload dataset (part 00006-of-00007)
dcd9bea verified
|
raw
history blame
34.7 kB
metadata
license: mit
size_categories:
  - 100K<n<1M
pretty_name: 'n'
dataset_info:
  - config_name: c10-16
    features:
      - name: data
        sequence: float16
      - name: test_loss
        dtype: float16
      - name: test_acc
        dtype: float16
      - name: train_loss
        dtype: float16
      - name: train_acc
        dtype: float16
    splits:
      - name: '0'
        num_bytes: 73741472
        num_examples: 2513
      - name: '1'
        num_bytes: 73741472
        num_examples: 2513
      - name: '2'
        num_bytes: 73741472
        num_examples: 2513
    download_size: 208172765
    dataset_size: 221224416
  - config_name: default
    features:
      - name: data
        sequence: float16
      - name: test_loss
        dtype: float16
      - name: test_acc
        dtype: float16
      - name: train_loss
        dtype: float16
      - name: train_acc
        dtype: float16
    splits:
      - name: '0'
        num_bytes: 77328384
        num_examples: 2688
      - name: '1'
        num_bytes: 77328384
        num_examples: 2688
      - name: '2'
        num_bytes: 77328384
        num_examples: 2688
    download_size: 218320869
    dataset_size: 231985152
  - config_name: fm-16
    features:
      - name: data
        sequence: float16
      - name: test_loss
        dtype: float16
      - name: test_acc
        dtype: float16
      - name: train_loss
        dtype: float16
      - name: train_acc
        dtype: float16
    splits:
      - name: '0'
        num_bytes: 77328384
        num_examples: 2688
      - name: '1'
        num_bytes: 77328384
        num_examples: 2688
      - name: '2'
        num_bytes: 77328384
        num_examples: 2688
      - name: '3'
        num_bytes: 77328384
        num_examples: 2688
      - name: '4'
        num_bytes: 77328384
        num_examples: 2688
      - name: '5'
        num_bytes: 77328384
        num_examples: 2688
      - name: '6'
        num_bytes: 77328384
        num_examples: 2688
      - name: '7'
        num_bytes: 77328384
        num_examples: 2688
      - name: '8'
        num_bytes: 77328384
        num_examples: 2688
      - name: '9'
        num_bytes: 77328384
        num_examples: 2688
      - name: '10'
        num_bytes: 77328384
        num_examples: 2688
      - name: '11'
        num_bytes: 77328384
        num_examples: 2688
      - name: '12'
        num_bytes: 77328384
        num_examples: 2688
      - name: '13'
        num_bytes: 77328384
        num_examples: 2688
      - name: '14'
        num_bytes: 77328384
        num_examples: 2688
      - name: '15'
        num_bytes: 77328384
        num_examples: 2688
      - name: '16'
        num_bytes: 77328384
        num_examples: 2688
      - name: '17'
        num_bytes: 77328384
        num_examples: 2688
      - name: '18'
        num_bytes: 77328384
        num_examples: 2688
      - name: '19'
        num_bytes: 77328384
        num_examples: 2688
      - name: '20'
        num_bytes: 77328384
        num_examples: 2688
      - name: '21'
        num_bytes: 77328384
        num_examples: 2688
      - name: '22'
        num_bytes: 77328384
        num_examples: 2688
      - name: '23'
        num_bytes: 77328384
        num_examples: 2688
      - name: '24'
        num_bytes: 77328384
        num_examples: 2688
      - name: '25'
        num_bytes: 77328384
        num_examples: 2688
      - name: '26'
        num_bytes: 77328384
        num_examples: 2688
      - name: '27'
        num_bytes: 77328384
        num_examples: 2688
      - name: '28'
        num_bytes: 77328384
        num_examples: 2688
      - name: '29'
        num_bytes: 77328384
        num_examples: 2688
      - name: '30'
        num_bytes: 77328384
        num_examples: 2688
      - name: '31'
        num_bytes: 77328384
        num_examples: 2688
      - name: '32'
        num_bytes: 77328384
        num_examples: 2688
      - name: '33'
        num_bytes: 77328384
        num_examples: 2688
      - name: '34'
        num_bytes: 77328384
        num_examples: 2688
      - name: '35'
        num_bytes: 77328384
        num_examples: 2688
      - name: '36'
        num_bytes: 77328384
        num_examples: 2688
      - name: '37'
        num_bytes: 77328384
        num_examples: 2688
      - name: '38'
        num_bytes: 77328384
        num_examples: 2688
      - name: '39'
        num_bytes: 77328384
        num_examples: 2688
      - name: '40'
        num_bytes: 77328384
        num_examples: 2688
      - name: '41'
        num_bytes: 77328384
        num_examples: 2688
      - name: '42'
        num_bytes: 77328384
        num_examples: 2688
      - name: '43'
        num_bytes: 77328384
        num_examples: 2688
      - name: '44'
        num_bytes: 77328384
        num_examples: 2688
      - name: '45'
        num_bytes: 77328384
        num_examples: 2688
      - name: '46'
        num_bytes: 77328384
        num_examples: 2688
      - name: '47'
        num_bytes: 77328384
        num_examples: 2688
      - name: '48'
        num_bytes: 77328384
        num_examples: 2688
      - name: '49'
        num_bytes: 77328384
        num_examples: 2688
      - name: '50'
        num_bytes: 77328384
        num_examples: 2688
      - name: '51'
        num_bytes: 77328384
        num_examples: 2688
      - name: '52'
        num_bytes: 77328384
        num_examples: 2688
      - name: '53'
        num_bytes: 77328384
        num_examples: 2688
      - name: '54'
        num_bytes: 77328384
        num_examples: 2688
      - name: '55'
        num_bytes: 77328384
        num_examples: 2688
      - name: '56'
        num_bytes: 77328384
        num_examples: 2688
      - name: '57'
        num_bytes: 77328384
        num_examples: 2688
      - name: '58'
        num_bytes: 77328384
        num_examples: 2688
      - name: '59'
        num_bytes: 77328384
        num_examples: 2688
      - name: '60'
        num_bytes: 77328384
        num_examples: 2688
      - name: '61'
        num_bytes: 77328384
        num_examples: 2688
      - name: '62'
        num_bytes: 77328384
        num_examples: 2688
      - name: '63'
        num_bytes: 77328384
        num_examples: 2688
      - name: '64'
        num_bytes: 77328384
        num_examples: 2688
      - name: '65'
        num_bytes: 77328384
        num_examples: 2688
      - name: '66'
        num_bytes: 77328384
        num_examples: 2688
      - name: '67'
        num_bytes: 77328384
        num_examples: 2688
      - name: '68'
        num_bytes: 77328384
        num_examples: 2688
      - name: '69'
        num_bytes: 77328384
        num_examples: 2688
      - name: '70'
        num_bytes: 77328384
        num_examples: 2688
      - name: '71'
        num_bytes: 77328384
        num_examples: 2688
      - name: '72'
        num_bytes: 77328384
        num_examples: 2688
      - name: '73'
        num_bytes: 77328384
        num_examples: 2688
      - name: '74'
        num_bytes: 77328384
        num_examples: 2688
      - name: '75'
        num_bytes: 77328384
        num_examples: 2688
      - name: '76'
        num_bytes: 77328384
        num_examples: 2688
      - name: '77'
        num_bytes: 77328384
        num_examples: 2688
      - name: '78'
        num_bytes: 77328384
        num_examples: 2688
      - name: '79'
        num_bytes: 77328384
        num_examples: 2688
      - name: '80'
        num_bytes: 77328384
        num_examples: 2688
      - name: '81'
        num_bytes: 77328384
        num_examples: 2688
      - name: '82'
        num_bytes: 77328384
        num_examples: 2688
      - name: '83'
        num_bytes: 77328384
        num_examples: 2688
      - name: '84'
        num_bytes: 77328384
        num_examples: 2688
      - name: '85'
        num_bytes: 77328384
        num_examples: 2688
      - name: '86'
        num_bytes: 77328384
        num_examples: 2688
      - name: '87'
        num_bytes: 77328384
        num_examples: 2688
      - name: '88'
        num_bytes: 77328384
        num_examples: 2688
      - name: '89'
        num_bytes: 77328384
        num_examples: 2688
      - name: '90'
        num_bytes: 77328384
        num_examples: 2688
      - name: '91'
        num_bytes: 77328384
        num_examples: 2688
      - name: '92'
        num_bytes: 77328384
        num_examples: 2688
      - name: '93'
        num_bytes: 77328384
        num_examples: 2688
      - name: '94'
        num_bytes: 77328384
        num_examples: 2688
      - name: '95'
        num_bytes: 77328384
        num_examples: 2688
      - name: '96'
        num_bytes: 77328384
        num_examples: 2688
      - name: '97'
        num_bytes: 77328384
        num_examples: 2688
      - name: '98'
        num_bytes: 77328384
        num_examples: 2688
      - name: '99'
        num_bytes: 77328384
        num_examples: 2688
      - name: '100'
        num_bytes: 77328384
        num_examples: 2688
      - name: '101'
        num_bytes: 77328384
        num_examples: 2688
      - name: '102'
        num_bytes: 77328384
        num_examples: 2688
      - name: '103'
        num_bytes: 77328384
        num_examples: 2688
      - name: '104'
        num_bytes: 77328384
        num_examples: 2688
      - name: '105'
        num_bytes: 77328384
        num_examples: 2688
      - name: '106'
        num_bytes: 77328384
        num_examples: 2688
      - name: '107'
        num_bytes: 77328384
        num_examples: 2688
      - name: '108'
        num_bytes: 77328384
        num_examples: 2688
      - name: '109'
        num_bytes: 77328384
        num_examples: 2688
      - name: '110'
        num_bytes: 77328384
        num_examples: 2688
      - name: '111'
        num_bytes: 77328384
        num_examples: 2688
      - name: '112'
        num_bytes: 77328384
        num_examples: 2688
      - name: '113'
        num_bytes: 77328384
        num_examples: 2688
      - name: '114'
        num_bytes: 77328384
        num_examples: 2688
      - name: '115'
        num_bytes: 77328384
        num_examples: 2688
      - name: '116'
        num_bytes: 77328384
        num_examples: 2688
      - name: '117'
        num_bytes: 77328384
        num_examples: 2688
      - name: '118'
        num_bytes: 77328384
        num_examples: 2688
      - name: '119'
        num_bytes: 77328384
        num_examples: 2688
      - name: '120'
        num_bytes: 77328384
        num_examples: 2688
      - name: '121'
        num_bytes: 77328384
        num_examples: 2688
      - name: '122'
        num_bytes: 77328384
        num_examples: 2688
      - name: '123'
        num_bytes: 77328384
        num_examples: 2688
      - name: '124'
        num_bytes: 77328384
        num_examples: 2688
      - name: '125'
        num_bytes: 77328384
        num_examples: 2688
      - name: '126'
        num_bytes: 77328384
        num_examples: 2688
      - name: '127'
        num_bytes: 77328384
        num_examples: 2688
      - name: '128'
        num_bytes: 77328384
        num_examples: 2688
      - name: '129'
        num_bytes: 77328384
        num_examples: 2688
      - name: '130'
        num_bytes: 77328384
        num_examples: 2688
      - name: '131'
        num_bytes: 77328384
        num_examples: 2688
      - name: '132'
        num_bytes: 77328384
        num_examples: 2688
      - name: '133'
        num_bytes: 77328384
        num_examples: 2688
      - name: '134'
        num_bytes: 77328384
        num_examples: 2688
      - name: '135'
        num_bytes: 77328384
        num_examples: 2688
      - name: '136'
        num_bytes: 77328384
        num_examples: 2688
      - name: '137'
        num_bytes: 77328384
        num_examples: 2688
      - name: '138'
        num_bytes: 77328384
        num_examples: 2688
      - name: '139'
        num_bytes: 77328384
        num_examples: 2688
      - name: '140'
        num_bytes: 77328384
        num_examples: 2688
      - name: '141'
        num_bytes: 77328384
        num_examples: 2688
      - name: '142'
        num_bytes: 77328384
        num_examples: 2688
      - name: '143'
        num_bytes: 77328384
        num_examples: 2688
      - name: '144'
        num_bytes: 77328384
        num_examples: 2688
      - name: '145'
        num_bytes: 77328384
        num_examples: 2688
      - name: '146'
        num_bytes: 77328384
        num_examples: 2688
      - name: '147'
        num_bytes: 77328384
        num_examples: 2688
      - name: '148'
        num_bytes: 77328384
        num_examples: 2688
      - name: '149'
        num_bytes: 77328384
        num_examples: 2688
      - name: '150'
        num_bytes: 77328384
        num_examples: 2688
      - name: '151'
        num_bytes: 77328384
        num_examples: 2688
      - name: '152'
        num_bytes: 77328384
        num_examples: 2688
      - name: '153'
        num_bytes: 77328384
        num_examples: 2688
      - name: '154'
        num_bytes: 77328384
        num_examples: 2688
      - name: '155'
        num_bytes: 77328384
        num_examples: 2688
      - name: '156'
        num_bytes: 77328384
        num_examples: 2688
      - name: '157'
        num_bytes: 77328384
        num_examples: 2688
      - name: '158'
        num_bytes: 77328384
        num_examples: 2688
      - name: '159'
        num_bytes: 77328384
        num_examples: 2688
      - name: '160'
        num_bytes: 77328384
        num_examples: 2688
      - name: '161'
        num_bytes: 77328384
        num_examples: 2688
      - name: '162'
        num_bytes: 77328384
        num_examples: 2688
      - name: '163'
        num_bytes: 77328384
        num_examples: 2688
      - name: '164'
        num_bytes: 77328384
        num_examples: 2688
      - name: '165'
        num_bytes: 77328384
        num_examples: 2688
      - name: '166'
        num_bytes: 77328384
        num_examples: 2688
      - name: '167'
        num_bytes: 77328384
        num_examples: 2688
      - name: '168'
        num_bytes: 77328384
        num_examples: 2688
      - name: '169'
        num_bytes: 77328384
        num_examples: 2688
      - name: '170'
        num_bytes: 77328384
        num_examples: 2688
      - name: '171'
        num_bytes: 77328384
        num_examples: 2688
      - name: '172'
        num_bytes: 77328384
        num_examples: 2688
      - name: '173'
        num_bytes: 77328384
        num_examples: 2688
      - name: '174'
        num_bytes: 77328384
        num_examples: 2688
      - name: '175'
        num_bytes: 77328384
        num_examples: 2688
      - name: '176'
        num_bytes: 77328384
        num_examples: 2688
      - name: '177'
        num_bytes: 77328384
        num_examples: 2688
      - name: '178'
        num_bytes: 77328384
        num_examples: 2688
      - name: '179'
        num_bytes: 77328384
        num_examples: 2688
      - name: '180'
        num_bytes: 77328384
        num_examples: 2688
      - name: '181'
        num_bytes: 77328384
        num_examples: 2688
      - name: '182'
        num_bytes: 77328384
        num_examples: 2688
      - name: '183'
        num_bytes: 77328384
        num_examples: 2688
      - name: '184'
        num_bytes: 77328384
        num_examples: 2688
      - name: '185'
        num_bytes: 77328384
        num_examples: 2688
      - name: '186'
        num_bytes: 77328384
        num_examples: 2688
      - name: '187'
        num_bytes: 77328384
        num_examples: 2688
      - name: '188'
        num_bytes: 77328384
        num_examples: 2688
      - name: '189'
        num_bytes: 77328384
        num_examples: 2688
      - name: '190'
        num_bytes: 77328384
        num_examples: 2688
      - name: '191'
        num_bytes: 77328384
        num_examples: 2688
      - name: '192'
        num_bytes: 77328384
        num_examples: 2688
      - name: '193'
        num_bytes: 77328384
        num_examples: 2688
      - name: '194'
        num_bytes: 77328384
        num_examples: 2688
      - name: '195'
        num_bytes: 77328384
        num_examples: 2688
      - name: '196'
        num_bytes: 77328384
        num_examples: 2688
      - name: '197'
        num_bytes: 77328384
        num_examples: 2688
      - name: '198'
        num_bytes: 77328384
        num_examples: 2688
      - name: '199'
        num_bytes: 77328384
        num_examples: 2688
      - name: '200'
        num_bytes: 77328384
        num_examples: 2688
      - name: '201'
        num_bytes: 77328384
        num_examples: 2688
      - name: '202'
        num_bytes: 77328384
        num_examples: 2688
      - name: '203'
        num_bytes: 77328384
        num_examples: 2688
      - name: '204'
        num_bytes: 77328384
        num_examples: 2688
      - name: '205'
        num_bytes: 77328384
        num_examples: 2688
      - name: '206'
        num_bytes: 77328384
        num_examples: 2688
      - name: '207'
        num_bytes: 77328384
        num_examples: 2688
      - name: '208'
        num_bytes: 77328384
        num_examples: 2688
      - name: '209'
        num_bytes: 77328384
        num_examples: 2688
      - name: '210'
        num_bytes: 77328384
        num_examples: 2688
      - name: '211'
        num_bytes: 77328384
        num_examples: 2688
      - name: '212'
        num_bytes: 77328384
        num_examples: 2688
      - name: '213'
        num_bytes: 77328384
        num_examples: 2688
      - name: '214'
        num_bytes: 77328384
        num_examples: 2688
      - name: '215'
        num_bytes: 77328384
        num_examples: 2688
      - name: '216'
        num_bytes: 77328384
        num_examples: 2688
      - name: '217'
        num_bytes: 77328384
        num_examples: 2688
      - name: '218'
        num_bytes: 77328384
        num_examples: 2688
      - name: '219'
        num_bytes: 77328384
        num_examples: 2688
      - name: '220'
        num_bytes: 77328384
        num_examples: 2688
      - name: '221'
        num_bytes: 77328384
        num_examples: 2688
      - name: '222'
        num_bytes: 77328384
        num_examples: 2688
      - name: '223'
        num_bytes: 77328384
        num_examples: 2688
      - name: '224'
        num_bytes: 77328384
        num_examples: 2688
      - name: '225'
        num_bytes: 77328384
        num_examples: 2688
      - name: '226'
        num_bytes: 77328384
        num_examples: 2688
      - name: '227'
        num_bytes: 77328384
        num_examples: 2688
      - name: '228'
        num_bytes: 77328384
        num_examples: 2688
      - name: '229'
        num_bytes: 77328384
        num_examples: 2688
      - name: '230'
        num_bytes: 77328384
        num_examples: 2688
      - name: '231'
        num_bytes: 77328384
        num_examples: 2688
      - name: '232'
        num_bytes: 77328384
        num_examples: 2688
      - name: '233'
        num_bytes: 77328384
        num_examples: 2688
      - name: '234'
        num_bytes: 77328384
        num_examples: 2688
      - name: '235'
        num_bytes: 77328384
        num_examples: 2688
      - name: '236'
        num_bytes: 77328384
        num_examples: 2688
      - name: '237'
        num_bytes: 77328384
        num_examples: 2688
      - name: '238'
        num_bytes: 77328384
        num_examples: 2688
      - name: '239'
        num_bytes: 77328384
        num_examples: 2688
      - name: '240'
        num_bytes: 77328384
        num_examples: 2688
      - name: '241'
        num_bytes: 77328384
        num_examples: 2688
      - name: '242'
        num_bytes: 77328384
        num_examples: 2688
      - name: '243'
        num_bytes: 77328384
        num_examples: 2688
      - name: '244'
        num_bytes: 77328384
        num_examples: 2688
      - name: '245'
        num_bytes: 77328384
        num_examples: 2688
      - name: '246'
        num_bytes: 77328384
        num_examples: 2688
      - name: '247'
        num_bytes: 77328384
        num_examples: 2688
      - name: '248'
        num_bytes: 77328384
        num_examples: 2688
      - name: '249'
        num_bytes: 77328384
        num_examples: 2688
      - name: '250'
        num_bytes: 77328384
        num_examples: 2688
      - name: '251'
        num_bytes: 77328384
        num_examples: 2688
      - name: '252'
        num_bytes: 77328384
        num_examples: 2688
      - name: '253'
        num_bytes: 77328384
        num_examples: 2688
      - name: '254'
        num_bytes: 77328384
        num_examples: 2688
      - name: '255'
        num_bytes: 77328384
        num_examples: 2688
      - name: '256'
        num_bytes: 77328384
        num_examples: 2688
      - name: '257'
        num_bytes: 77328384
        num_examples: 2688
      - name: '258'
        num_bytes: 77328384
        num_examples: 2688
      - name: '259'
        num_bytes: 77328384
        num_examples: 2688
      - name: '260'
        num_bytes: 77328384
        num_examples: 2688
      - name: '261'
        num_bytes: 77328384
        num_examples: 2688
      - name: '262'
        num_bytes: 77328384
        num_examples: 2688
      - name: '263'
        num_bytes: 77328384
        num_examples: 2688
      - name: '264'
        num_bytes: 77328384
        num_examples: 2688
      - name: '265'
        num_bytes: 77328384
        num_examples: 2688
      - name: '266'
        num_bytes: 77328384
        num_examples: 2688
      - name: '267'
        num_bytes: 77328384
        num_examples: 2688
      - name: '268'
        num_bytes: 77328384
        num_examples: 2688
      - name: '269'
        num_bytes: 77328384
        num_examples: 2688
      - name: '270'
        num_bytes: 77328384
        num_examples: 2688
      - name: '271'
        num_bytes: 77328384
        num_examples: 2688
      - name: '272'
        num_bytes: 77328384
        num_examples: 2688
      - name: '273'
        num_bytes: 77328384
        num_examples: 2688
      - name: '274'
        num_bytes: 77328384
        num_examples: 2688
      - name: '275'
        num_bytes: 77328384
        num_examples: 2688
      - name: '276'
        num_bytes: 77328384
        num_examples: 2688
      - name: '277'
        num_bytes: 77328384
        num_examples: 2688
      - name: '278'
        num_bytes: 77328384
        num_examples: 2688
      - name: '279'
        num_bytes: 77328384
        num_examples: 2688
      - name: '280'
        num_bytes: 77328384
        num_examples: 2688
      - name: '281'
        num_bytes: 77328384
        num_examples: 2688
      - name: '282'
        num_bytes: 77328384
        num_examples: 2688
      - name: '283'
        num_bytes: 77328384
        num_examples: 2688
      - name: '284'
        num_bytes: 77328384
        num_examples: 2688
      - name: '285'
        num_bytes: 77328384
        num_examples: 2688
      - name: '286'
        num_bytes: 77328384
        num_examples: 2688
      - name: '287'
        num_bytes: 77328384
        num_examples: 2688
      - name: '288'
        num_bytes: 77328384
        num_examples: 2688
      - name: '289'
        num_bytes: 77328384
        num_examples: 2688
      - name: '290'
        num_bytes: 77328384
        num_examples: 2688
      - name: '291'
        num_bytes: 77328384
        num_examples: 2688
      - name: '292'
        num_bytes: 77328384
        num_examples: 2688
      - name: '293'
        num_bytes: 77328384
        num_examples: 2688
      - name: '294'
        num_bytes: 77328384
        num_examples: 2688
      - name: '295'
        num_bytes: 77328384
        num_examples: 2688
      - name: '296'
        num_bytes: 77328384
        num_examples: 2688
      - name: '297'
        num_bytes: 77328384
        num_examples: 2688
      - name: '298'
        num_bytes: 77328384
        num_examples: 2688
      - name: '299'
        num_bytes: 77328384
        num_examples: 2688
    download_size: 21834229494
    dataset_size: 23198515200
  - config_name: lm1b-2-32
    features:
      - name: data
        sequence: float16
      - name: train_loss
        dtype: float16
    splits:
      - name: '0'
        num_bytes: 413283816
        num_examples: 124
      - name: '1'
        num_bytes: 413283816
        num_examples: 124
      - name: '2'
        num_bytes: 413283816
        num_examples: 124
    download_size: 1163916640
    dataset_size: 1239851448
  - config_name: lm1b-3-24
    features:
      - name: data
        sequence: float16
      - name: train_loss
        dtype: float16
    splits:
      - name: '0'
        num_bytes: 310611816
        num_examples: 124
      - name: '1'
        num_bytes: 310611816
        num_examples: 124
      - name: '2'
        num_bytes: 310611816
        num_examples: 124
    download_size: 874816124
    dataset_size: 931835448
configs:
  - config_name: c10-16
    data_files:
      - split: '0'
        path: c10-16/0-*
      - split: '1'
        path: c10-16/1-*
      - split: '2'
        path: c10-16/2-*
  - config_name: default
    data_files:
      - split: '0'
        path: data/0-*
      - split: '1'
        path: data/1-*
      - split: '2'
        path: data/2-*
  - config_name: fm-16
    data_files:
      - split: '0'
        path: fm-16/0-*
      - split: '1'
        path: fm-16/1-*
      - split: '2'
        path: fm-16/2-*
      - split: '3'
        path: fm-16/3-*
      - split: '4'
        path: fm-16/4-*
      - split: '5'
        path: fm-16/5-*
      - split: '6'
        path: fm-16/6-*
      - split: '7'
        path: fm-16/7-*
      - split: '8'
        path: fm-16/8-*
      - split: '9'
        path: fm-16/9-*
      - split: '10'
        path: fm-16/10-*
      - split: '11'
        path: fm-16/11-*
      - split: '12'
        path: fm-16/12-*
      - split: '13'
        path: fm-16/13-*
      - split: '14'
        path: fm-16/14-*
      - split: '15'
        path: fm-16/15-*
      - split: '16'
        path: fm-16/16-*
      - split: '17'
        path: fm-16/17-*
      - split: '18'
        path: fm-16/18-*
      - split: '19'
        path: fm-16/19-*
      - split: '20'
        path: fm-16/20-*
      - split: '21'
        path: fm-16/21-*
      - split: '22'
        path: fm-16/22-*
      - split: '23'
        path: fm-16/23-*
      - split: '24'
        path: fm-16/24-*
      - split: '25'
        path: fm-16/25-*
      - split: '26'
        path: fm-16/26-*
      - split: '27'
        path: fm-16/27-*
      - split: '28'
        path: fm-16/28-*
      - split: '29'
        path: fm-16/29-*
      - split: '30'
        path: fm-16/30-*
      - split: '31'
        path: fm-16/31-*
      - split: '32'
        path: fm-16/32-*
      - split: '33'
        path: fm-16/33-*
      - split: '34'
        path: fm-16/34-*
      - split: '35'
        path: fm-16/35-*
      - split: '36'
        path: fm-16/36-*
      - split: '37'
        path: fm-16/37-*
      - split: '38'
        path: fm-16/38-*
      - split: '39'
        path: fm-16/39-*
      - split: '40'
        path: fm-16/40-*
      - split: '41'
        path: fm-16/41-*
      - split: '42'
        path: fm-16/42-*
      - split: '43'
        path: fm-16/43-*
      - split: '44'
        path: fm-16/44-*
      - split: '45'
        path: fm-16/45-*
      - split: '46'
        path: fm-16/46-*
      - split: '47'
        path: fm-16/47-*
      - split: '48'
        path: fm-16/48-*
      - split: '49'
        path: fm-16/49-*
      - split: '50'
        path: fm-16/50-*
      - split: '51'
        path: fm-16/51-*
      - split: '52'
        path: fm-16/52-*
      - split: '53'
        path: fm-16/53-*
      - split: '54'
        path: fm-16/54-*
      - split: '55'
        path: fm-16/55-*
      - split: '56'
        path: fm-16/56-*
      - split: '57'
        path: fm-16/57-*
      - split: '58'
        path: fm-16/58-*
      - split: '59'
        path: fm-16/59-*
      - split: '60'
        path: fm-16/60-*
      - split: '61'
        path: fm-16/61-*
      - split: '62'
        path: fm-16/62-*
      - split: '63'
        path: fm-16/63-*
      - split: '64'
        path: fm-16/64-*
      - split: '65'
        path: fm-16/65-*
      - split: '66'
        path: fm-16/66-*
      - split: '67'
        path: fm-16/67-*
      - split: '68'
        path: fm-16/68-*
      - split: '69'
        path: fm-16/69-*
      - split: '70'
        path: fm-16/70-*
      - split: '71'
        path: fm-16/71-*
      - split: '72'
        path: fm-16/72-*
      - split: '73'
        path: fm-16/73-*
      - split: '74'
        path: fm-16/74-*
      - split: '75'
        path: fm-16/75-*
      - split: '76'
        path: fm-16/76-*
      - split: '77'
        path: fm-16/77-*
      - split: '78'
        path: fm-16/78-*
      - split: '79'
        path: fm-16/79-*
      - split: '80'
        path: fm-16/80-*
      - split: '81'
        path: fm-16/81-*
      - split: '82'
        path: fm-16/82-*
      - split: '83'
        path: fm-16/83-*
      - split: '84'
        path: fm-16/84-*
      - split: '85'
        path: fm-16/85-*
      - split: '86'
        path: fm-16/86-*
      - split: '87'
        path: fm-16/87-*
      - split: '88'
        path: fm-16/88-*
      - split: '89'
        path: fm-16/89-*
      - split: '90'
        path: fm-16/90-*
      - split: '91'
        path: fm-16/91-*
      - split: '92'
        path: fm-16/92-*
      - split: '93'
        path: fm-16/93-*
      - split: '94'
        path: fm-16/94-*
      - split: '95'
        path: fm-16/95-*
      - split: '96'
        path: fm-16/96-*
      - split: '97'
        path: fm-16/97-*
      - split: '98'
        path: fm-16/98-*
      - split: '99'
        path: fm-16/99-*
      - split: '100'
        path: fm-16/100-*
      - split: '101'
        path: fm-16/101-*
      - split: '102'
        path: fm-16/102-*
      - split: '103'
        path: fm-16/103-*
      - split: '104'
        path: fm-16/104-*
      - split: '105'
        path: fm-16/105-*
      - split: '106'
        path: fm-16/106-*
      - split: '107'
        path: fm-16/107-*
      - split: '108'
        path: fm-16/108-*
      - split: '109'
        path: fm-16/109-*
      - split: '110'
        path: fm-16/110-*
      - split: '111'
        path: fm-16/111-*
      - split: '112'
        path: fm-16/112-*
      - split: '113'
        path: fm-16/113-*
      - split: '114'
        path: fm-16/114-*
      - split: '115'
        path: fm-16/115-*
      - split: '116'
        path: fm-16/116-*
      - split: '117'
        path: fm-16/117-*
      - split: '118'
        path: fm-16/118-*
      - split: '119'
        path: fm-16/119-*
      - split: '120'
        path: fm-16/120-*
      - split: '121'
        path: fm-16/121-*
      - split: '122'
        path: fm-16/122-*
      - split: '123'
        path: fm-16/123-*
      - split: '124'
        path: fm-16/124-*
      - split: '125'
        path: fm-16/125-*
      - split: '126'
        path: fm-16/126-*
      - split: '127'
        path: fm-16/127-*
      - split: '128'
        path: fm-16/128-*
      - split: '129'
        path: fm-16/129-*
      - split: '130'
        path: fm-16/130-*
      - split: '131'
        path: fm-16/131-*
      - split: '132'
        path: fm-16/132-*
      - split: '133'
        path: fm-16/133-*
      - split: '134'
        path: fm-16/134-*
      - split: '135'
        path: fm-16/135-*
      - split: '136'
        path: fm-16/136-*
      - split: '137'
        path: fm-16/137-*
      - split: '138'
        path: fm-16/138-*
      - split: '139'
        path: fm-16/139-*
      - split: '140'
        path: fm-16/140-*
      - split: '141'
        path: fm-16/141-*
      - split: '142'
        path: fm-16/142-*
      - split: '143'
        path: fm-16/143-*
      - split: '144'
        path: fm-16/144-*
      - split: '145'
        path: fm-16/145-*
      - split: '146'
        path: fm-16/146-*
      - split: '147'
        path: fm-16/147-*
      - split: '148'
        path: fm-16/148-*
      - split: '149'
        path: fm-16/149-*
      - split: '150'
        path: fm-16/150-*
      - split: '151'
        path: fm-16/151-*
      - split: '152'
        path: fm-16/152-*
      - split: '153'
        path: fm-16/153-*
      - split: '154'
        path: fm-16/154-*
      - split: '155'
        path: fm-16/155-*
      - split: '156'
        path: fm-16/156-*
      - split: '157'
        path: fm-16/157-*
      - split: '158'
        path: fm-16/158-*
      - split: '159'
        path: fm-16/159-*
      - split: '160'
        path: fm-16/160-*
      - split: '161'
        path: fm-16/161-*
      - split: '162'
        path: fm-16/162-*
      - split: '163'
        path: fm-16/163-*
      - split: '164'
        path: fm-16/164-*
      - split: '165'
        path: fm-16/165-*
      - split: '166'
        path: fm-16/166-*
      - split: '167'
        path: fm-16/167-*
      - split: '168'
        path: fm-16/168-*
      - split: '169'
        path: fm-16/169-*
      - split: '170'
        path: fm-16/170-*
      - split: '171'
        path: fm-16/171-*
      - split: '172'
        path: fm-16/172-*
      - split: '173'
        path: fm-16/173-*
      - split: '174'
        path: fm-16/174-*
      - split: '175'
        path: fm-16/175-*
      - split: '176'
        path: fm-16/176-*
      - split: '177'
        path: fm-16/177-*
      - split: '178'
        path: fm-16/178-*
      - split: '179'
        path: fm-16/179-*
      - split: '180'
        path: fm-16/180-*
      - split: '181'
        path: fm-16/181-*
      - split: '182'
        path: fm-16/182-*
      - split: '183'
        path: fm-16/183-*
      - split: '184'
        path: fm-16/184-*
      - split: '185'
        path: fm-16/185-*
      - split: '186'
        path: fm-16/186-*
      - split: '187'
        path: fm-16/187-*
      - split: '188'
        path: fm-16/188-*
      - split: '189'
        path: fm-16/189-*
      - split: '190'
        path: fm-16/190-*
      - split: '191'
        path: fm-16/191-*
      - split: '192'
        path: fm-16/192-*
      - split: '193'
        path: fm-16/193-*
      - split: '194'
        path: fm-16/194-*
      - split: '195'
        path: fm-16/195-*
      - split: '196'
        path: fm-16/196-*
      - split: '197'
        path: fm-16/197-*
      - split: '198'
        path: fm-16/198-*
      - split: '199'
        path: fm-16/199-*
      - split: '200'
        path: fm-16/200-*
      - split: '201'
        path: fm-16/201-*
      - split: '202'
        path: fm-16/202-*
      - split: '203'
        path: fm-16/203-*
      - split: '204'
        path: fm-16/204-*
      - split: '205'
        path: fm-16/205-*
      - split: '206'
        path: fm-16/206-*
      - split: '207'
        path: fm-16/207-*
      - split: '208'
        path: fm-16/208-*
      - split: '209'
        path: fm-16/209-*
      - split: '210'
        path: fm-16/210-*
      - split: '211'
        path: fm-16/211-*
      - split: '212'
        path: fm-16/212-*
      - split: '213'
        path: fm-16/213-*
      - split: '214'
        path: fm-16/214-*
      - split: '215'
        path: fm-16/215-*
      - split: '216'
        path: fm-16/216-*
      - split: '217'
        path: fm-16/217-*
      - split: '218'
        path: fm-16/218-*
      - split: '219'
        path: fm-16/219-*
      - split: '220'
        path: fm-16/220-*
      - split: '221'
        path: fm-16/221-*
      - split: '222'
        path: fm-16/222-*
      - split: '223'
        path: fm-16/223-*
      - split: '224'
        path: fm-16/224-*
      - split: '225'
        path: fm-16/225-*
      - split: '226'
        path: fm-16/226-*
      - split: '227'
        path: fm-16/227-*
      - split: '228'
        path: fm-16/228-*
      - split: '229'
        path: fm-16/229-*
      - split: '230'
        path: fm-16/230-*
      - split: '231'
        path: fm-16/231-*
      - split: '232'
        path: fm-16/232-*
      - split: '233'
        path: fm-16/233-*
      - split: '234'
        path: fm-16/234-*
      - split: '235'
        path: fm-16/235-*
      - split: '236'
        path: fm-16/236-*
      - split: '237'
        path: fm-16/237-*
      - split: '238'
        path: fm-16/238-*
      - split: '239'
        path: fm-16/239-*
      - split: '240'
        path: fm-16/240-*
      - split: '241'
        path: fm-16/241-*
      - split: '242'
        path: fm-16/242-*
      - split: '243'
        path: fm-16/243-*
      - split: '244'
        path: fm-16/244-*
      - split: '245'
        path: fm-16/245-*
      - split: '246'
        path: fm-16/246-*
      - split: '247'
        path: fm-16/247-*
      - split: '248'
        path: fm-16/248-*
      - split: '249'
        path: fm-16/249-*
      - split: '250'
        path: fm-16/250-*
      - split: '251'
        path: fm-16/251-*
      - split: '252'
        path: fm-16/252-*
      - split: '253'
        path: fm-16/253-*
      - split: '254'
        path: fm-16/254-*
      - split: '255'
        path: fm-16/255-*
      - split: '256'
        path: fm-16/256-*
      - split: '257'
        path: fm-16/257-*
      - split: '258'
        path: fm-16/258-*
      - split: '259'
        path: fm-16/259-*
      - split: '260'
        path: fm-16/260-*
      - split: '261'
        path: fm-16/261-*
      - split: '262'
        path: fm-16/262-*
      - split: '263'
        path: fm-16/263-*
      - split: '264'
        path: fm-16/264-*
      - split: '265'
        path: fm-16/265-*
      - split: '266'
        path: fm-16/266-*
      - split: '267'
        path: fm-16/267-*
      - split: '268'
        path: fm-16/268-*
      - split: '269'
        path: fm-16/269-*
      - split: '270'
        path: fm-16/270-*
      - split: '271'
        path: fm-16/271-*
      - split: '272'
        path: fm-16/272-*
      - split: '273'
        path: fm-16/273-*
      - split: '274'
        path: fm-16/274-*
      - split: '275'
        path: fm-16/275-*
      - split: '276'
        path: fm-16/276-*
      - split: '277'
        path: fm-16/277-*
      - split: '278'
        path: fm-16/278-*
      - split: '279'
        path: fm-16/279-*
      - split: '280'
        path: fm-16/280-*
      - split: '281'
        path: fm-16/281-*
      - split: '282'
        path: fm-16/282-*
      - split: '283'
        path: fm-16/283-*
      - split: '284'
        path: fm-16/284-*
      - split: '285'
        path: fm-16/285-*
      - split: '286'
        path: fm-16/286-*
      - split: '287'
        path: fm-16/287-*
      - split: '288'
        path: fm-16/288-*
      - split: '289'
        path: fm-16/289-*
      - split: '290'
        path: fm-16/290-*
      - split: '291'
        path: fm-16/291-*
      - split: '292'
        path: fm-16/292-*
      - split: '293'
        path: fm-16/293-*
      - split: '294'
        path: fm-16/294-*
      - split: '295'
        path: fm-16/295-*
      - split: '296'
        path: fm-16/296-*
      - split: '297'
        path: fm-16/297-*
      - split: '298'
        path: fm-16/298-*
      - split: '299'
        path: fm-16/299-*
  - config_name: lm1b-2-32
    data_files:
      - split: '0'
        path: lm1b-2-32/0-*
      - split: '1'
        path: lm1b-2-32/1-*
      - split: '2'
        path: lm1b-2-32/2-*
  - config_name: lm1b-3-24
    data_files:
      - split: '0'
        path: lm1b-3-24/0-*
      - split: '1'
        path: lm1b-3-24/1-*
      - split: '2'
        path: lm1b-3-24/2-*

The dataset is being prepared and uploaded

This is the dataset of trained neural network checkpoints used to meta-train the NiNo model from https://github.com/SamsungSAILMontreal/nino/.

It contains 1000 models in total:

  • 300 small convnets with 3 layers and 16, 32 and 32 channels (14,378 parameters in each model), trained on FashionMNIST (FM-16)
  • 300 small convnets with 3 layers and 16, 32 and 32 channels (14,666 parameters in each model), trained on CIFAR10 (C10-16)
  • 200 small GPT2-based transformers with 3 layers, 24 hidden units and 3 heads (1,252,464 parameters in each model), trained on LM1B (LM1B-3-24)
  • 200 small GPT2-based transformers with 2 layers, 32 hidden units and 2 heads (1,666,464 parameters in each model), trained on LM1B (LM1B-2-32)

Each model contains multiple checkpoints:

  • 2688 checkpoints per each model in FM-16 (corresponding to every 4 steps of Adam)
  • 2513 checkpoints per each model in C10-16 (corresponding to every 4 steps of Adam)
  • 124 checkpoints per each model in LM1B-3-24 (corresponding to every 200 steps of Adam)
  • 124 checkpoints per each model in LM1B-2-32 (corresponding to every 200 steps of Adam)

In total, there are 1,609,900 model checkpoints.

The dataset also contains the training loss for each checkpoint, for FM-16 and C10-16 it also contains training accuracy, test loss, test accuracy.

The dataset corresponds to the first 4 columns (in-distribution tasks) in Table 1 below.

This Table is from the Accelerating Training with Neuron Interaction and Nowcasting Networks paper, see https://arxiv.org/abs/2409.04434 for details.