|
import os |
|
import numpy as np |
|
import pandas as pd |
|
import matplotlib.pyplot as plt |
|
from typing import Dict |
|
|
|
|
|
def calculate_pnl( |
|
product: str, |
|
exchange: str, |
|
data: pd.DataFrame, |
|
max_pos: int, |
|
open_threshold: float, |
|
close_threshold: float |
|
): |
|
""" |
|
此函数用于计算一天的收益。 |
|
:param product: 交易品种 |
|
:param exchange: 交易所 |
|
:param data: 交易数据, 必须包含 predict, bid, ask, bid_vol, ask_vol 这五列数据 |
|
:param max_pos: 最大仓位 |
|
:param open_threshold: 开仓阈值 |
|
:param close_threshold: 平仓阈值 |
|
:return: {"profit": 毛利润, "commission": 手续费, "trade_n": 交易手数} |
|
""" |
|
|
|
|
|
fee_data = pd.read_csv("./other_data/commission-2023-12-18.csv") |
|
volume_data = pd.read_csv("./other_data/DailyMarketVolume_20231218.csv") |
|
inst_data = pd.read_csv("./other_data/instrument-2023-12-18.csv") |
|
|
|
lock_position_list = ["IC", "IF", "IH", "IM", "AP", "lh", "sn", "ni", ] |
|
lock_position = product in lock_position_list |
|
if exchange in ["SHFE", "DCE", "GFEX"]: |
|
product = product.lower() |
|
else: |
|
product = product.upper() |
|
tmp = volume_data[volume_data['ProductId'] == product] |
|
if len(tmp) != 1: |
|
raise ValueError("There is {} volume record for {} ".format(len(tmp), product)) |
|
symbol = str(tmp['Symbol1'].values[0]) |
|
tmp = fee_data[fee_data["InstrumentID"] == symbol] |
|
if len(tmp) < 1: |
|
raise ValueError("{} commission record less than 1".format(symbol)) |
|
open_ratio = tmp["OpenRatioByMoney"].values[0] |
|
open_fix = tmp["OpenRatioByVolume"].values[0] |
|
if lock_position: |
|
close_ratio = tmp["CloseRatioByMoney"].values[0] |
|
close_fix = tmp["CloseRatioByVolume"].values[0] |
|
else: |
|
close_ratio = tmp["CloseTodayRatioByMoney"].values[0] |
|
close_fix = tmp["CloseTodayRatioByVolume"].values[0] |
|
inst_data = inst_data[inst_data["InstrumentID"] == symbol] |
|
assert len(inst_data) > 0, "{} inst record is 0".format(symbol) |
|
multiplier = int(inst_data["VolumeMultiple"].values[0]) |
|
px_tick = inst_data["PriceTick"].values[0] |
|
val_multip = multiplier * px_tick |
|
|
|
|
|
predict = data["predict_0226"].values |
|
bid = data["bid"].values |
|
ask = data["ask"].values |
|
bid_vol = data["bid_vol"].values |
|
ask_vol = data["ask_vol"].values |
|
cur_pos = 0 |
|
revenue = [0] |
|
average_profit = 0 |
|
commission = [0] |
|
all_account = [0] |
|
trade_n = 0 |
|
for i in range(predict.shape[0]): |
|
trade_signal = predict[i] |
|
ord_amt = 0 |
|
dir = None |
|
if cur_pos == 0: |
|
if trade_signal >= open_threshold: |
|
dir = "BUY" |
|
ord_amt = min(max_pos, ask_vol[i]) |
|
elif trade_signal <= -1 * open_threshold: |
|
dir = "SELL" |
|
ord_amt = min(max_pos, bid_vol[i]) |
|
elif cur_pos > 0: |
|
if trade_signal >= open_threshold and cur_pos < max_pos: |
|
dir = "BUY" |
|
ord_amt = max(0, min(max_pos - cur_pos, ask_vol[i])) |
|
elif trade_signal <= -1 * close_threshold: |
|
dir = "SELL" |
|
if trade_signal <= -1 * open_threshold: |
|
ord_amt = min(max_pos + cur_pos, bid_vol[0]) |
|
else: |
|
ord_amt = min(cur_pos, bid_vol[0]) |
|
else: |
|
if trade_signal <= -1 * open_threshold and cur_pos > -max_pos: |
|
dir = "SELL" |
|
ord_amt = max(0, min(max_pos + cur_pos, bid_vol[i])) |
|
elif trade_signal >= close_threshold: |
|
dir = "BUY" |
|
if trade_signal >= open_threshold: |
|
ord_amt = min(max_pos - cur_pos, ask_vol[i]) |
|
else: |
|
ord_amt = min(-cur_pos, ask_vol[i]) |
|
if ord_amt != 0 and dir is not None: |
|
|
|
if dir == 'SELL': |
|
px = bid[i] |
|
if cur_pos >= ord_amt: |
|
diff = px * ord_amt - average_profit * ord_amt |
|
commission.append(ord_amt * (px * close_ratio * val_multip + close_fix)) |
|
elif cur_pos <= 0: |
|
diff = 0 |
|
average_profit = (average_profit * abs(cur_pos) + ord_amt * px) / (abs(cur_pos) + ord_amt) |
|
commission.append(ord_amt * (px * open_ratio * val_multip + open_fix)) |
|
else: |
|
diff = px * abs(cur_pos) - average_profit * abs(cur_pos) |
|
commission.append(abs(cur_pos) * (px * close_ratio * val_multip + close_fix) + \ |
|
(ord_amt - abs(cur_pos)) * (px * open_ratio * val_multip + open_fix)) |
|
average_profit = px |
|
cur_pos = cur_pos - ord_amt |
|
all_account.append(cur_pos) |
|
elif dir == 'BUY': |
|
px = ask[i] |
|
if cur_pos <= ord_amt * -1: |
|
diff = average_profit * ord_amt - px * ord_amt |
|
commission.append(ord_amt * (px * close_ratio * val_multip + close_fix)) |
|
elif cur_pos >= 0: |
|
diff = 0 |
|
average_profit = (average_profit * abs(cur_pos) + ord_amt * px) / (abs(cur_pos) + ord_amt) |
|
commission.append(ord_amt * (px * open_ratio * val_multip + open_fix)) |
|
else: |
|
diff = average_profit * abs(cur_pos) - px * abs(cur_pos) |
|
commission.append(abs(cur_pos) * (px * close_ratio * val_multip + close_fix) + \ |
|
(ord_amt - abs(cur_pos)) * (px * open_ratio * val_multip + open_fix)) |
|
average_profit = px |
|
cur_pos = cur_pos + ord_amt |
|
all_account.append(cur_pos) |
|
else: |
|
raise ValueError("Unknown dir: {}".format(dir)) |
|
revenue.append(diff * val_multip) |
|
trade_n += ord_amt |
|
return {"revenue": revenue, "commission": commission, "trade_n": trade_n} |
|
|
|
|
|
def sharpe_ratio( |
|
pl: np.ndarray, |
|
base_rate: float = 0, |
|
): |
|
""" |
|
此代码用于计算夏普率 |
|
""" |
|
if len(pl) == 0: |
|
return np.NaN |
|
pl2 = pl - base_rate |
|
pl2_std = np.std(pl2) |
|
if pl2_std == 0: |
|
return np.NaN |
|
return np.mean(pl2) / pl2_std |
|
|
|
|
|
def sharpe_ratio_day( |
|
net_pl: np.ndarray |
|
): |
|
""" |
|
此代码用于计算夏普率(按照天数计算) |
|
""" |
|
n_days = len(net_pl) |
|
if n_days == 0: |
|
return np.NaN |
|
mult = float(len(net_pl)) * 250 / n_days |
|
return sharpe_ratio(net_pl) * np.sqrt(mult) |
|
|
|
|
|
def plot_pnl(revenue: np.ndarray, commission: np.ndarray, rebate_ratio: float, save_dir: str, title: str): |
|
""" |
|
此代码用于绘制收益曲线 |
|
""" |
|
plt.figure(figsize = (10, 5)) |
|
plt.step(range(len(revenue)), np.cumsum(revenue), color = 'g', label = 'Revenue') |
|
plt.step(range(len(commission)), np.cumsum(commission), color = 'r', label = 'Commission') |
|
plt.step(range(len(revenue)), np.cumsum(revenue) - np.cumsum(commission), color = 'b', linestyle = '--', label = 'Profit') |
|
plt.step(range(len(revenue)), np.cumsum(revenue) - np.cumsum(commission * (1 - rebate_ratio)), color = 'b', label = 'Net P&L') |
|
plt.axhline(y = 0, color = 'g', linestyle = '--') |
|
plt.title(title) |
|
plt.legend() |
|
plt.savefig(save_dir) |
|
|
|
|
|
def portfolio( |
|
trade_data: Dict, |
|
max_pos: int, |
|
threshold: tuple, |
|
rebate_ratio: float, |
|
save_dir: str, |
|
): |
|
""" |
|
此代码用于生成回测报告(csv文件)和绘制收益曲线 |
|
:param trade_data: 交易数据 |
|
:param max_pos: 最大仓位 |
|
:param threshold: 交易阈值 |
|
:param rebate_ratio: 手续费返还比例 |
|
:param save_dir: 报告保存路径 |
|
:return: None |
|
""" |
|
start_day = min(list(trade_data.keys())) |
|
end_day = max(list(trade_data.keys())) |
|
days_n = len(list(trade_data.keys())) |
|
revenue_list = [] |
|
commission_list = [] |
|
trade_n = 0 |
|
for x in trade_data.values(): |
|
revenue_list.append(sum(x["revenue"])) |
|
commission_list.append(sum(x["commission"])) |
|
trade_n += x["trade_n"] |
|
net_pnl_list = np.array(revenue_list) - (1 - rebate_ratio) * np.array(commission_list) |
|
sr = sharpe_ratio_day(net_pnl_list) |
|
report_path = os.path.join(save_dir, "backtest.csv") |
|
figure_path = os.path.join(save_dir, "figures") |
|
os.makedirs(figure_path, exist_ok = True) |
|
if os.path.exists(report_path): |
|
report = pd.read_csv(report_path) |
|
else: |
|
report = pd.DataFrame( |
|
columns = [ |
|
"StartDay", "EndDay", "Days", "Threshold", "MaxPos", "Revenue", "Fee", "Profit", "PNL", |
|
"AvgPnl", "Sharpe", "Trades", "TO", |
|
] |
|
) |
|
new_row = pd.DataFrame( |
|
{ |
|
"StartDay": [start_day], |
|
"EndDay": [end_day], |
|
"Days": [days_n], |
|
"Threshold": [threshold], |
|
"MaxPos": [max_pos], |
|
"Revenue": [sum(revenue_list)], |
|
"Fee": [sum(commission_list)], |
|
"Profit": [sum(revenue_list) - sum(commission_list)], |
|
"PNL": [sum(net_pnl_list)], |
|
"AvgPnl": [sum(net_pnl_list) / trade_n if trade_n > 0 else 0], |
|
"Sharpe": [sr], |
|
"Trades": [trade_n], |
|
"TO": [trade_n / days_n / max_pos if trade_n > 0 else 0], |
|
} |
|
) |
|
report = pd.concat([report, new_row], ignore_index = True) |
|
report.to_csv(report_path, index = False) |
|
plot_pnl( |
|
revenue = np.concatenate([x["revenue"] for x in trade_data.values()]), |
|
commission = np.concatenate([x["commission"] for x in trade_data.values()]), |
|
rebate_ratio = rebate_ratio, |
|
save_dir = os.path.join(figure_path, "backtest_{:.03f}_{:.03f}.png".format(threshold[0], threshold[1])), |
|
title = "Backtest {} - {}".format(str(start_day), str(end_day)) |
|
) |
|
|