Futures_202306_202312 / calculate_pnl.py
Skywayne's picture
Upload 4 files
4cbde8f verified
raw
history blame
10.5 kB
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from typing import Dict
def calculate_pnl(
product: str,
exchange: str,
data: pd.DataFrame,
max_pos: int,
open_threshold: float,
close_threshold: float
):
"""
此函数用于计算一天的收益。
:param product: 交易品种
:param exchange: 交易所
:param data: 交易数据, 必须包含 predict, bid, ask, bid_vol, ask_vol 这五列数据
:param max_pos: 最大仓位
:param open_threshold: 开仓阈值
:param close_threshold: 平仓阈值
:return: {"profit": 毛利润, "commission": 手续费, "trade_n": 交易手数}
"""
# load other data
############################## change dir here ##############################
fee_data = pd.read_csv("./other_data/commission-2023-12-18.csv")
volume_data = pd.read_csv("./other_data/DailyMarketVolume_20231218.csv")
inst_data = pd.read_csv("./other_data/instrument-2023-12-18.csv")
#############################################################################
lock_position_list = ["IC", "IF", "IH", "IM", "AP", "lh", "sn", "ni", ]
lock_position = product in lock_position_list
if exchange in ["SHFE", "DCE", "GFEX"]:
product = product.lower()
else:
product = product.upper()
tmp = volume_data[volume_data['ProductId'] == product]
if len(tmp) != 1:
raise ValueError("There is {} volume record for {} ".format(len(tmp), product))
symbol = str(tmp['Symbol1'].values[0])
tmp = fee_data[fee_data["InstrumentID"] == symbol]
if len(tmp) < 1:
raise ValueError("{} commission record less than 1".format(symbol))
open_ratio = tmp["OpenRatioByMoney"].values[0]
open_fix = tmp["OpenRatioByVolume"].values[0]
if lock_position:
close_ratio = tmp["CloseRatioByMoney"].values[0]
close_fix = tmp["CloseRatioByVolume"].values[0]
else:
close_ratio = tmp["CloseTodayRatioByMoney"].values[0]
close_fix = tmp["CloseTodayRatioByVolume"].values[0]
inst_data = inst_data[inst_data["InstrumentID"] == symbol]
assert len(inst_data) > 0, "{} inst record is 0".format(symbol)
multiplier = int(inst_data["VolumeMultiple"].values[0])
px_tick = inst_data["PriceTick"].values[0]
val_multip = multiplier * px_tick
# calculate trade information
# predict = data["predict"].values
predict = data["predict_0226"].values
bid = data["bid"].values
ask = data["ask"].values
bid_vol = data["bid_vol"].values
ask_vol = data["ask_vol"].values
cur_pos = 0
revenue = [0]
average_profit = 0
commission = [0]
all_account = [0]
trade_n = 0
for i in range(predict.shape[0]):
trade_signal = predict[i]
ord_amt = 0
dir = None
if cur_pos == 0:
if trade_signal >= open_threshold:
dir = "BUY"
ord_amt = min(max_pos, ask_vol[i])
elif trade_signal <= -1 * open_threshold:
dir = "SELL"
ord_amt = min(max_pos, bid_vol[i])
elif cur_pos > 0:
if trade_signal >= open_threshold and cur_pos < max_pos:
dir = "BUY"
ord_amt = max(0, min(max_pos - cur_pos, ask_vol[i]))
elif trade_signal <= -1 * close_threshold:
dir = "SELL"
if trade_signal <= -1 * open_threshold:
ord_amt = min(max_pos + cur_pos, bid_vol[0])
else:
ord_amt = min(cur_pos, bid_vol[0])
else: # cur_pos < 0
if trade_signal <= -1 * open_threshold and cur_pos > -max_pos:
dir = "SELL"
ord_amt = max(0, min(max_pos + cur_pos, bid_vol[i]))
elif trade_signal >= close_threshold:
dir = "BUY"
if trade_signal >= open_threshold:
ord_amt = min(max_pos - cur_pos, ask_vol[i])
else:
ord_amt = min(-cur_pos, ask_vol[i])
if ord_amt != 0 and dir is not None:
# calculate pnl & update cur_pos
if dir == 'SELL':
px = bid[i]
if cur_pos >= ord_amt:
diff = px * ord_amt - average_profit * ord_amt
commission.append(ord_amt * (px * close_ratio * val_multip + close_fix))
elif cur_pos <= 0:
diff = 0
average_profit = (average_profit * abs(cur_pos) + ord_amt * px) / (abs(cur_pos) + ord_amt)
commission.append(ord_amt * (px * open_ratio * val_multip + open_fix))
else:
diff = px * abs(cur_pos) - average_profit * abs(cur_pos)
commission.append(abs(cur_pos) * (px * close_ratio * val_multip + close_fix) + \
(ord_amt - abs(cur_pos)) * (px * open_ratio * val_multip + open_fix))
average_profit = px
cur_pos = cur_pos - ord_amt
all_account.append(cur_pos)
elif dir == 'BUY':
px = ask[i]
if cur_pos <= ord_amt * -1:
diff = average_profit * ord_amt - px * ord_amt
commission.append(ord_amt * (px * close_ratio * val_multip + close_fix))
elif cur_pos >= 0:
diff = 0
average_profit = (average_profit * abs(cur_pos) + ord_amt * px) / (abs(cur_pos) + ord_amt)
commission.append(ord_amt * (px * open_ratio * val_multip + open_fix))
else:
diff = average_profit * abs(cur_pos) - px * abs(cur_pos)
commission.append(abs(cur_pos) * (px * close_ratio * val_multip + close_fix) + \
(ord_amt - abs(cur_pos)) * (px * open_ratio * val_multip + open_fix))
average_profit = px
cur_pos = cur_pos + ord_amt
all_account.append(cur_pos)
else:
raise ValueError("Unknown dir: {}".format(dir))
revenue.append(diff * val_multip)
trade_n += ord_amt
return {"revenue": revenue, "commission": commission, "trade_n": trade_n} # "position": all_account,
def sharpe_ratio(
pl: np.ndarray,
base_rate: float = 0,
):
"""
此代码用于计算夏普率
"""
if len(pl) == 0:
return np.NaN
pl2 = pl - base_rate
pl2_std = np.std(pl2)
if pl2_std == 0:
return np.NaN
return np.mean(pl2) / pl2_std
def sharpe_ratio_day(
net_pl: np.ndarray
):
"""
此代码用于计算夏普率(按照天数计算)
"""
n_days = len(net_pl)
if n_days == 0:
return np.NaN
mult = float(len(net_pl)) * 250 / n_days
return sharpe_ratio(net_pl) * np.sqrt(mult)
def plot_pnl(revenue: np.ndarray, commission: np.ndarray, rebate_ratio: float, save_dir: str, title: str):
"""
此代码用于绘制收益曲线
"""
plt.figure(figsize = (10, 5))
plt.step(range(len(revenue)), np.cumsum(revenue), color = 'g', label = 'Revenue')
plt.step(range(len(commission)), np.cumsum(commission), color = 'r', label = 'Commission')
plt.step(range(len(revenue)), np.cumsum(revenue) - np.cumsum(commission), color = 'b', linestyle = '--', label = 'Profit')
plt.step(range(len(revenue)), np.cumsum(revenue) - np.cumsum(commission * (1 - rebate_ratio)), color = 'b', label = 'Net P&L')
plt.axhline(y = 0, color = 'g', linestyle = '--')
plt.title(title)
plt.legend()
plt.savefig(save_dir)
def portfolio(
trade_data: Dict,
max_pos: int,
threshold: tuple,
rebate_ratio: float,
save_dir: str,
):
"""
此代码用于生成回测报告(csv文件)和绘制收益曲线
:param trade_data: 交易数据
:param max_pos: 最大仓位
:param threshold: 交易阈值
:param rebate_ratio: 手续费返还比例
:param save_dir: 报告保存路径
:return: None
"""
start_day = min(list(trade_data.keys()))
end_day = max(list(trade_data.keys()))
days_n = len(list(trade_data.keys()))
revenue_list = []
commission_list = []
trade_n = 0
for x in trade_data.values():
revenue_list.append(sum(x["revenue"]))
commission_list.append(sum(x["commission"]))
trade_n += x["trade_n"]
net_pnl_list = np.array(revenue_list) - (1 - rebate_ratio) * np.array(commission_list)
sr = sharpe_ratio_day(net_pnl_list)
report_path = os.path.join(save_dir, "backtest.csv")
figure_path = os.path.join(save_dir, "figures")
os.makedirs(figure_path, exist_ok = True)
if os.path.exists(report_path):
report = pd.read_csv(report_path)
else:
report = pd.DataFrame(
columns = [
"StartDay", "EndDay", "Days", "Threshold", "MaxPos", "Revenue", "Fee", "Profit", "PNL",
"AvgPnl", "Sharpe", "Trades", "TO",
]
)
new_row = pd.DataFrame(
{
"StartDay": [start_day], # 第一个交易日
"EndDay": [end_day], # 最后一个交易日
"Days": [days_n], # 交易日数量
"Threshold": [threshold], # 交易阈值
"MaxPos": [max_pos], # 最大仓位
"Revenue": [sum(revenue_list)], # 费前收益
"Fee": [sum(commission_list)], # 手续费
"Profit": [sum(revenue_list) - sum(commission_list)], # 费后收益
"PNL": [sum(net_pnl_list)], # 净收益(加上手续费返还:PNL = Profit + rebate_ratio * Fee)
"AvgPnl": [sum(net_pnl_list) / trade_n if trade_n > 0 else 0], # 每笔交易的净利润
"Sharpe": [sr], # 夏普率
"Trades": [trade_n], # 交易手数
"TO": [trade_n / days_n / max_pos if trade_n > 0 else 0], # 换手率
}
)
report = pd.concat([report, new_row], ignore_index = True)
report.to_csv(report_path, index = False)
plot_pnl(
revenue = np.concatenate([x["revenue"] for x in trade_data.values()]),
commission = np.concatenate([x["commission"] for x in trade_data.values()]),
rebate_ratio = rebate_ratio,
save_dir = os.path.join(figure_path, "backtest_{:.03f}_{:.03f}.png".format(threshold[0], threshold[1])),
title = "Backtest {} - {}".format(str(start_day), str(end_day))
)