Skywayne's picture
Upload 4 files
4cbde8f verified
raw
history blame
2.57 kB
"""
运行此脚本可以得到回测结果。
你需要先修改此脚本中的data_dir和save_dir、以及calculate_pnl.py中的fee_data、volume_data、inst_data五个地方的路径为你本地机器的路径,
之后就可以运行成功。
"""
from calculate_pnl import calculate_pnl, portfolio
import pandas as pd
import os
from datetime import date, timedelta
product_para = {
# "FG": {"exchange": "CZCE", "open_threshold": 0.88, "close_threshold": 0.792},
# "sc": {"exchange": "DCE", "open_threshold": 0.46, "close_threshold": 0.322},
"FG": {"exchange": "CZCE", "open_threshold": 0.25, "close_threshold": 0.15},
"sc": {"exchange": "DCE", "open_threshold": 0.46, "close_threshold": 0.322},
}
############################## change dir here ##############################
# data_dir = "./generate_data/" # 保存数据的路径
# save_dir = "./backtest/" # 保存回测结果的路径
data_dir = "./res/" # 保存数据的路径
save_dir = "./backtest/" # 保存回测结果的路径
#############################################################################
if __name__ == "__main__":
# product parameters
product = "FG" # 品种名称
exchange = product_para[product]["exchange"] # 交易所
open_threshold = product_para[product]["open_threshold"] # 开仓阈值
close_threshold = product_para[product]["close_threshold"] # 平仓阈值
max_pos = 1 # 最大仓位
# backtest parameters
start_day = date(2023, 12, 18) # 回测起始日
end_day = date(2023, 12, 18) # 回测结束日
rebate_ratio = 0.4 # 手续费返还比例,0.4代表40%的手续费最后会被返还给给账户
# backtest
day = start_day
backtest_data = {}
while day <= end_day:
path = os.path.join(data_dir, product, "{}.csv".format(day))
print(path, os.path.exists(path))
if not os.path.exists(path):
day += timedelta(days = 1)
continue
tmp = pd.read_csv(path)
backtest_data[day] = calculate_pnl(
product = product,
exchange = exchange,
data = tmp,
max_pos = max_pos,
open_threshold = open_threshold,
close_threshold = close_threshold,
)
day += timedelta(days = 1)
continue
# generate pnl data
portfolio(
trade_data = backtest_data,
max_pos = max_pos,
threshold = (open_threshold, close_threshold),
rebate_ratio = rebate_ratio,
save_dir = os.path.join(save_dir, product),
)